Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Measuring the vibration in car panels to reduce metal fatigue


With each new vehicle, the car industry faces a fresh battle to cut out the unwanted vibrations that cause irritating rattles and the metal fatigue that can cause parts to break, with potentially lethal consequences.

The complexity of the problems persuaded the German automobile giant BMW to team up with smaller partners to find a new way of designing new vehicles. It got together with Belgian companies LMS International, a world market leader in noise and vibration engineering, optics specialist Labor Dr Steinbichler and the Free University of Brussels in the EUREKA project HOLO-MODAL.

HOLO-MODAL has developed a new way of measuring the way car body panels vibrate that combines traditional vibration measurement with the latest holographic techniques.

Traditional measurement of vibration relies on attaching sensors to a test panel. However, it only measures the vibration at the sensor and attaching too many sensors changes the way the panel moves, altering the results. To gain an accurate picture of the whole panel’s response to vibration, you need to be able to see the effect on every part of the panel’s surface at the same time and without affecting the results. This is where holographic techniques come in.

Holographic analysis avoids physical contact with the test panel by illuminating the whole panel with a laser beam. By measuring the light that is reflected by the panel, the system produces a high-resolution 3-dimensional image of the whole surface as it vibrates.

The HOLO-MODAL partners designed a software package that combines traditional and holographic techniques, controls the hardware and shows how to incorporate the technique into early design work. Now car makers can design body panels that are safer, more durable and save development costs spent on vibration and noise control.

The computer models developed from the measurement data allow the effect of any design changes to be predicted and hence they allow users the chance to try out alternative solutions "on the computer" before actually building them In this way the system helps the development of design solutions.

This new technology can also be used to help design a new generation of safer, more durable and quieter domestic and office appliances and consumer electronic products.

Dr Herman van der Auweraer, project leader at LMS International, says none of the partners could have succeeded on their own.

“EUREKA allowed us to define and work towards a common goal of mutual interest," says van der Auweraer. "The partnership combined complementary capabilities and know-how in structural modelling and laser holography. This combination of technologies was critical to the development of the solution; however neither party had both skills available. The synergy was therefore essential for the success of the project."

"It is however also very relevant that the project combined end-user know-how and research direction. This ensured that the research and development efforts were focused on the real problems and not on academic topics.”

Nicola Vatthauer | alfa
Further information:

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>