Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the vibration in car panels to reduce metal fatigue

19.03.2003


With each new vehicle, the car industry faces a fresh battle to cut out the unwanted vibrations that cause irritating rattles and the metal fatigue that can cause parts to break, with potentially lethal consequences.

The complexity of the problems persuaded the German automobile giant BMW to team up with smaller partners to find a new way of designing new vehicles. It got together with Belgian companies LMS International, a world market leader in noise and vibration engineering, optics specialist Labor Dr Steinbichler and the Free University of Brussels in the EUREKA project HOLO-MODAL.

HOLO-MODAL has developed a new way of measuring the way car body panels vibrate that combines traditional vibration measurement with the latest holographic techniques.



Traditional measurement of vibration relies on attaching sensors to a test panel. However, it only measures the vibration at the sensor and attaching too many sensors changes the way the panel moves, altering the results. To gain an accurate picture of the whole panel’s response to vibration, you need to be able to see the effect on every part of the panel’s surface at the same time and without affecting the results. This is where holographic techniques come in.

Holographic analysis avoids physical contact with the test panel by illuminating the whole panel with a laser beam. By measuring the light that is reflected by the panel, the system produces a high-resolution 3-dimensional image of the whole surface as it vibrates.

The HOLO-MODAL partners designed a software package that combines traditional and holographic techniques, controls the hardware and shows how to incorporate the technique into early design work. Now car makers can design body panels that are safer, more durable and save development costs spent on vibration and noise control.

The computer models developed from the measurement data allow the effect of any design changes to be predicted and hence they allow users the chance to try out alternative solutions "on the computer" before actually building them In this way the system helps the development of design solutions.

This new technology can also be used to help design a new generation of safer, more durable and quieter domestic and office appliances and consumer electronic products.

Dr Herman van der Auweraer, project leader at LMS International, says none of the partners could have succeeded on their own.

“EUREKA allowed us to define and work towards a common goal of mutual interest," says van der Auweraer. "The partnership combined complementary capabilities and know-how in structural modelling and laser holography. This combination of technologies was critical to the development of the solution; however neither party had both skills available. The synergy was therefore essential for the success of the project."

"It is however also very relevant that the project combined end-user know-how and research direction. This ensured that the research and development efforts were focused on the real problems and not on academic topics.”

Nicola Vatthauer | alfa
Further information:
http://www.eureka.be/holomodal

More articles from Automotive Engineering:

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht The Future of Mobility: tomorrow’s ways of getting from A to B
07.09.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>