Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA highlights space in Europe`s cars

29.10.2002


Advanced space technology is being found more down-to-earth uses – even within the cars driven on Europe`s roads.

The ESA conference ‘Technology Exchange between Space and Automotive Industry’ is to highlight how spin-offs from space are influencing the evolution of European automobiles, heralding improvements in safety, performance and power. It will take place 6 November at ESOC, Darmstadt in Germany.

"Space technology deals with the challenging conditions of launching and space operations," explained Dr. Ulf Merbold, ESA Utilization Promotion Manager. "These extreme environments are drivers for innovative solutions, which can then be applied elsewhere."



The automobile and aerospace industries shared early pioneers, and have other elements in common: "Parallels can be drawn between protection of a payload and a driver in a car," said Dr Pierre Brisson, Head of ESA`s Technology Transfer and Promotion Office. "Everything has to be done to protect against dangerous factors, such as vibrations and impact."

The Prost Formula 1 team has reduced the vibrations its drivers endure during high-speed races. Prost achieved this using a dampening system first developed by Artec Aerospace for protecting satellite payloads during rocket launches.

A carbon composite material first designed to withstand the white-hot temperatures in Ariane rocket nozzles is now being utilised by Messier-Bugatti in high-performance brake systems for both Formula 1 and standard road vehicles.

In addition a novel sensor `skin` originated by the Canadian Space Agency is to be fitted to automobile bumpers. Originally intended to improve the tactile sensitivity of orbital robots used to assemble the International Space Station it will also enable bumpers to detect what type of obstacle they run into. If the bumper hits a `hard` object like a wall or car it will stay rigid, while if it hits a `soft` object – like a human being – it will crumple.

"If a problem exists in industry, can ESA bring a space solution?" asked Brisson. "The answer is yes, if the problem is correctly described and explained."

Space technology also can play a role in the design process. Software first written to simulate the behaviour of space structures is now being used by BMW, Rover and others to model vehicle prototype behaviour.

Miniature engines and gears designed for precision satellite operation also can provide increases in engine efficiency. Automobile bodies are being manufactured using space-derived metal alloys or plastic composites – lending increased strength at lower weights.

Most important may be space-derived ways of powering vehicles. In November 2001 an ESA-sponsored vehicle won the World Solar Challenge across Australia, fitted with solar power cells built for the Hubble Telescope.

"Solar power also has more practical applications, though not alone," explained Brisson. "It could be a component of a hybrid or tribrid vehicle, also using power sources like hydrogen fuel cells or LPG (liquefied petroleum gas) as well as gasoline." A LPG racing car is to be exhibited at ESOC in Darmstadt.

The November conference is intended to facilitate the process of automotive technology transfer, with more than 150 attendees. It is part of a larger effort to take advantage of space technology in other areas. ESA has already carried out more than 120 successful technology transfers over the last decade.

Pierre Brisson | alfa
Further information:
http://www.esa.int

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>