Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA highlights space in Europe`s cars

29.10.2002


Advanced space technology is being found more down-to-earth uses – even within the cars driven on Europe`s roads.

The ESA conference ‘Technology Exchange between Space and Automotive Industry’ is to highlight how spin-offs from space are influencing the evolution of European automobiles, heralding improvements in safety, performance and power. It will take place 6 November at ESOC, Darmstadt in Germany.

"Space technology deals with the challenging conditions of launching and space operations," explained Dr. Ulf Merbold, ESA Utilization Promotion Manager. "These extreme environments are drivers for innovative solutions, which can then be applied elsewhere."



The automobile and aerospace industries shared early pioneers, and have other elements in common: "Parallels can be drawn between protection of a payload and a driver in a car," said Dr Pierre Brisson, Head of ESA`s Technology Transfer and Promotion Office. "Everything has to be done to protect against dangerous factors, such as vibrations and impact."

The Prost Formula 1 team has reduced the vibrations its drivers endure during high-speed races. Prost achieved this using a dampening system first developed by Artec Aerospace for protecting satellite payloads during rocket launches.

A carbon composite material first designed to withstand the white-hot temperatures in Ariane rocket nozzles is now being utilised by Messier-Bugatti in high-performance brake systems for both Formula 1 and standard road vehicles.

In addition a novel sensor `skin` originated by the Canadian Space Agency is to be fitted to automobile bumpers. Originally intended to improve the tactile sensitivity of orbital robots used to assemble the International Space Station it will also enable bumpers to detect what type of obstacle they run into. If the bumper hits a `hard` object like a wall or car it will stay rigid, while if it hits a `soft` object – like a human being – it will crumple.

"If a problem exists in industry, can ESA bring a space solution?" asked Brisson. "The answer is yes, if the problem is correctly described and explained."

Space technology also can play a role in the design process. Software first written to simulate the behaviour of space structures is now being used by BMW, Rover and others to model vehicle prototype behaviour.

Miniature engines and gears designed for precision satellite operation also can provide increases in engine efficiency. Automobile bodies are being manufactured using space-derived metal alloys or plastic composites – lending increased strength at lower weights.

Most important may be space-derived ways of powering vehicles. In November 2001 an ESA-sponsored vehicle won the World Solar Challenge across Australia, fitted with solar power cells built for the Hubble Telescope.

"Solar power also has more practical applications, though not alone," explained Brisson. "It could be a component of a hybrid or tribrid vehicle, also using power sources like hydrogen fuel cells or LPG (liquefied petroleum gas) as well as gasoline." A LPG racing car is to be exhibited at ESOC in Darmstadt.

The November conference is intended to facilitate the process of automotive technology transfer, with more than 150 attendees. It is part of a larger effort to take advantage of space technology in other areas. ESA has already carried out more than 120 successful technology transfers over the last decade.

Pierre Brisson | alfa
Further information:
http://www.esa.int

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>