Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cooperative system could wipe out car alarm noise

The persistent, annoying blare of an ignored car alarm may become a sound of the past if a cooperative, mutable and silent network of monitors proposed by Penn State researchers is deployed in automobiles and parking lots.

"The basis of this system is trust," says Sencun Zhu, assistant professor of computer science and engineering. "You need to trust the entity that distributes the system's sensors, so you can rely on all the monitored cars having the goal of protecting your car and others from theft."

Working with Guohong Cao, associate professor of computer science and engineering, and Hui Song, recent Penn State graduate and now an assistant professor at Frostburg State University, Zhu developed a monitoring system that relies on a network formed by the cars parked in a parking lot. When a car enters a lot and parks, the sensor is alerted – probably when the car door locks -- and it sends out a signal that in essence says, "hello, I am here." Sensors in nearby cars acknowledge the signal and incorporate the new car into their network. Periodically, each car sends out a signal indicating that it is still there. When the driver unlocks the car, the sensor sends out a "goodbye" message and the network removes that car, and it drives away.

If, however, a car leaves the network without issuing a goodbye message, the other cars will notice the absence or the "still here" message. Once the system has confirmed that the car is gone, checking that other cars have not received the "still here" message, the monitoring sensor sends a signal identifying the car to the base unit in the parking lot, which will phone the owner to indicate the car is missing. The owner can then check it out.

"Our thought is that the apartment complex owner could provide the sensors with the parking stickers as an additional free perk," says Zhu, also assistant professor of information sciences and technology at Penn State. "All they need is the base unit, the car owner's phone number and the sensors in the car for the car should be safe in the lot."

If a car is stolen from the lot, it is preferable that the theft be noticed and reported before the car leaves the lot, but if it is not, the Sensor network-based Vehicle Anti-Theft system, SVATS, has another layer of protection.

Although the main or master sensor needs to be connected to the car's power system and so is fairly easily disabled by thieves, other slave sensors would be distributed in the car. These sensors might be activated when the master sensor no longer operates and begin to send out an identification signal. The researchers hope to be able to use existing wireless devices that are at intersections and roadsides, to track the sensors in the stolen car. While these wireless nodes are not on every street, in areas where they are used to sense traffic patterns, stop light timing and other things, they can be used to track stolen cars. Because the slave sensors are very small, they would be very difficult to locate and destroy, while conventional location equipment, such as various G.P.S. systems, can be identified and neutralized.

"Right now the sensors we are testing are about the size of a dollar coin with leads coming off," says Zhu. "We will eventually make them only about a cubic millimeter, small enough to embed in a parking sticker and very inexpensive to manufacture." A cubic millimeter is about the size of an ice cream sprinkle.

The researchers presented information on their system at the Institute of Electrical and Electronic Engineer's Infocom 2008 Conference in Phoenix. Experimental evaluation of the SVATS system used a laptop as a base station and one sensor per vehicle in a Penn State parking lot. The base station transmitted once per second while the vehicle sensors sent live messages every 200 milliseconds. Each sensor could monitor up to seven other nodes but should be monitored by at least three other nodes.

The researchers tested two different detection methods. The signature-based method took four to nine seconds to detect the absence of the stolen vehicle. This method requires that at least three nodes recognize that the stolen car has moved before sending an alert. Because of this requirement, there are no false positives and consequently, no false alarms. The system works in a parking lot and can track stolen vehicles.

According to Zhu, street parking is more difficult to deal with than parking lots, however, he believes that if apartment buildings along the street band together to provide sensors and base stations it might work as well. Because of the trust problem, he does not see the sensors being incorporated into cars from the factory, because identifying who owns which car and sensor would be difficult. Rather, Zhu thinks that perhaps eventually, some government office like a state's department of transportation could provide the sensors and keep track of the vehicles.

While the plan now is to have the base station contact the car owner by phone, eventually the option of having the call go to a protective service or the police for a fee is possible.

A'ndrea Elyse Messer | EurekAlert!
Further information:

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>