Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LLNL’s prototype hydrogen storage tank maintains extended thermal endurance

06.06.2008
A cryogenic pressure vessel developed and installed in an experimental hybrid vehicle by a Lawrence Livermore National Laboratory research team can hold liquid hydrogen for six days without venting any of the fuel.

Unlike conventional liquid hydrogen (LH2 tanks in prototype cars, the LLNL pressure vessel was parked for six days without venting evaporated hydrogen vapor.

The LLNL development has significantly increased the amount of time it takes to start releasing hydrogen during periods of long-term parking, as compared to today’s liquid hydrogen tanks capable of holding hydrogen for merely two to four days.

LH2 tanks hold super-cold liquid hydrogen at around -420 Fahrenheit. Like water boiling in a tea kettle, pressure builds as heat from the environment warms the hydrogen inside. Current automotive LH2 tanks must vent evaporated hydrogen vapor after being parked three to four days, even when using the best thermal insulation available (200 times less conductive than Styrofoam insulation).

In recent testing of its prototype hydrogen tank onboard a liquid hydrogen (LH2) powered hybrid, LLNL’s tank demonstrated a thermal endurance of six days and the potential for as much as 15 days, helping resolve a key challenge facing LH2 automobiles.

Today’s automotive LH2 tanks operate at low pressure (2-10 atmospheres). The LLNL cryogenic capable pressure vessel is much stronger, and can operate at hydrogen pressures of up to 350 atmospheres (similar to scuba tanks), holding the hydrogen even as the pressure increases due to heat transfer from the environment. This high-pressure capability also means that a vehicle’s thermal endurance improves as the tank is emptied, and is able to hold hydrogen fuel indefinitely when it is about one-third full.

Last year, the LLNL experimental hybrid vehicle demonstrated the longest driving distance on a single tank of hydrogen (650 miles). The recent thermal endurance experiments validate the key benefit of cryogenic pressure vessels: They deliver the high density of liquid hydrogen storage without the evaporative losses. These two advantages make LH2 vehicles far more practical in the search for a replacement to today’s gasoline-powered automobiles.

The Livermore work, sponsored by the Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy, is part of DOE’s National Hydrogen Storage Project to demonstrate advanced hydrogen-storage materials and designs. The project is a component of President George W. Bush’s Hydrogen Fuel Initiative launched in 2003 as well as his DOE Advanced Energy Initiative of 2006.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Automotive Engineering:

nachricht The Future of Mobility: tomorrow’s ways of getting from A to B
07.09.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht ShAPEing the future of magnesium car parts
23.08.2017 | DOE/Pacific Northwest National Laboratory

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>