Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Automotive safety systems get more dependable

As automotive safety systems become more complex, the risk of failure increases. But European researchers believe they have found a way to improve dependability.

Modern cars are complex beasts with electric and electronic components that are smarter than the average desktop computer. They perform split-second calculations so they can deploy, for example, an airbag at the appropriate time.

And that is just one example. There are dozens of others, either available now or emerging from the research and development labs of Europe’s automakers. The developments mean automotive safety is about to get a whole lot more complex.

But complexity is the bane of dependability. The more complex a system, the more likely it will suffer potentially catastrophic errors.

Enter Integrated Safety Systems (ISSs), the latest paradigm in safety engineering. Such technologies allow safety components, like speed, steering or other sensors, to be available for a variety of applications.

In the past, a wheel speed sensor would be slaved to the ABS braking system, but under ISS all components are part of a network, so they are available for a host of other applications, like ensuring a car or truck is observing local speed limits.

This integration reduces development time and the costs of a new application. But ISS can also improve dependability by designing it into in-car infrastructure from the start.

That was the goal of the EASIS project, an EU-funded research effort to build an ISS for the automotive industry as part of a much broader effort to improve car safety. It was not a simple task.

Uniting safety systems
“The problem is that there are a lot of safety systems, but they are standalone, so in the future we will have to combine them,” explains Dr Vera Lauer, coordinator of EASIS.

“We had to collect requirements from the different applications and domains, and to combine them into an integrated safety system,” says Lauer.

Such problems included fitting software and its services to requirements, using cost-efficient hardware solutions on the engine control unit (or ECU) level, and identifying the appropriate processes and tools to develop these systems. There were two specific architectures to address: software and hardware.

“The development partnership AUTOSAR, is dealing with the standardisation of software architecture for automotive applications, so we aligned ourselves to their work, concentrating on safety services,” notes Lauer.

For hardware architecture, EASIS focused on cost-efficient and scalable approaches.

Eliminating unnecessary complexity
The team’s contribution to the standards process for hardware interfaces was a big step forward. Hardware interfaces are the physical connections between components. An agreed standard, which is emerging now, will save a lot of money and eliminate unnecessary complexity.

Next, the team developed a model-based application development approach, called the EASIS Engineering Process (EEP).

The approach is tailored for complex ISS. The research team integrated a dependability framework, which ensures applications are designed to eliminate or mitigate errors and failures.

The EEP covers both hardware and software design and validation and provides common services upon which future applications can be built.

The team verified their results in two demonstrators. In one, they showed the effectiveness of a firewall they developed for telematics systems.

“A lot of emerging safety systems will involve in-car communications and telematics – either with GPS or other cars via wifi,” explains Lauer. “It is vital that the safety of the car cannot be compromised by malicious communication."

The project also demonstrated overall system dependability using a hardware simulator, called hardware-in-loop (or HIL), with an integrated retarder, or intarder. Retarders are hydraulic brakes.

Both cases demonstrated the effectiveness of the EASIS approach, and the work has attracted the interest of the European carmakers and suppliers.

“We kept in close contact with other major European car safety initiatives like PReVENT, AIDE and others,” says Lauer. “It was very successful. We have made a big step towards a working ISS infrastructure for cars.”

And that means that the complex science of car safety systems just got a whole lot simpler, and more dependable.

Ahmed ElAmin | alfa
Further information:

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>