Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automotive safety systems get more dependable

16.05.2008
As automotive safety systems become more complex, the risk of failure increases. But European researchers believe they have found a way to improve dependability.

Modern cars are complex beasts with electric and electronic components that are smarter than the average desktop computer. They perform split-second calculations so they can deploy, for example, an airbag at the appropriate time.

And that is just one example. There are dozens of others, either available now or emerging from the research and development labs of Europe’s automakers. The developments mean automotive safety is about to get a whole lot more complex.

But complexity is the bane of dependability. The more complex a system, the more likely it will suffer potentially catastrophic errors.

Enter Integrated Safety Systems (ISSs), the latest paradigm in safety engineering. Such technologies allow safety components, like speed, steering or other sensors, to be available for a variety of applications.

In the past, a wheel speed sensor would be slaved to the ABS braking system, but under ISS all components are part of a network, so they are available for a host of other applications, like ensuring a car or truck is observing local speed limits.

This integration reduces development time and the costs of a new application. But ISS can also improve dependability by designing it into in-car infrastructure from the start.

That was the goal of the EASIS project, an EU-funded research effort to build an ISS for the automotive industry as part of a much broader effort to improve car safety. It was not a simple task.

Uniting safety systems
“The problem is that there are a lot of safety systems, but they are standalone, so in the future we will have to combine them,” explains Dr Vera Lauer, coordinator of EASIS.

“We had to collect requirements from the different applications and domains, and to combine them into an integrated safety system,” says Lauer.

Such problems included fitting software and its services to requirements, using cost-efficient hardware solutions on the engine control unit (or ECU) level, and identifying the appropriate processes and tools to develop these systems. There were two specific architectures to address: software and hardware.

“The development partnership AUTOSAR, is dealing with the standardisation of software architecture for automotive applications, so we aligned ourselves to their work, concentrating on safety services,” notes Lauer.

For hardware architecture, EASIS focused on cost-efficient and scalable approaches.

Eliminating unnecessary complexity
The team’s contribution to the standards process for hardware interfaces was a big step forward. Hardware interfaces are the physical connections between components. An agreed standard, which is emerging now, will save a lot of money and eliminate unnecessary complexity.

Next, the team developed a model-based application development approach, called the EASIS Engineering Process (EEP).

The approach is tailored for complex ISS. The research team integrated a dependability framework, which ensures applications are designed to eliminate or mitigate errors and failures.

The EEP covers both hardware and software design and validation and provides common services upon which future applications can be built.

The team verified their results in two demonstrators. In one, they showed the effectiveness of a firewall they developed for telematics systems.

“A lot of emerging safety systems will involve in-car communications and telematics – either with GPS or other cars via wifi,” explains Lauer. “It is vital that the safety of the car cannot be compromised by malicious communication."

The project also demonstrated overall system dependability using a hardware simulator, called hardware-in-loop (or HIL), with an integrated retarder, or intarder. Retarders are hydraulic brakes.

Both cases demonstrated the effectiveness of the EASIS approach, and the work has attracted the interest of the European carmakers and suppliers.

“We kept in close contact with other major European car safety initiatives like PReVENT, AIDE and others,” says Lauer. “It was very successful. We have made a big step towards a working ISS infrastructure for cars.”

And that means that the complex science of car safety systems just got a whole lot simpler, and more dependable.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89735

More articles from Automotive Engineering:

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht The Future of Mobility: tomorrow’s ways of getting from A to B
07.09.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>