Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automotive safety systems get more dependable

16.05.2008
As automotive safety systems become more complex, the risk of failure increases. But European researchers believe they have found a way to improve dependability.

Modern cars are complex beasts with electric and electronic components that are smarter than the average desktop computer. They perform split-second calculations so they can deploy, for example, an airbag at the appropriate time.

And that is just one example. There are dozens of others, either available now or emerging from the research and development labs of Europe’s automakers. The developments mean automotive safety is about to get a whole lot more complex.

But complexity is the bane of dependability. The more complex a system, the more likely it will suffer potentially catastrophic errors.

Enter Integrated Safety Systems (ISSs), the latest paradigm in safety engineering. Such technologies allow safety components, like speed, steering or other sensors, to be available for a variety of applications.

In the past, a wheel speed sensor would be slaved to the ABS braking system, but under ISS all components are part of a network, so they are available for a host of other applications, like ensuring a car or truck is observing local speed limits.

This integration reduces development time and the costs of a new application. But ISS can also improve dependability by designing it into in-car infrastructure from the start.

That was the goal of the EASIS project, an EU-funded research effort to build an ISS for the automotive industry as part of a much broader effort to improve car safety. It was not a simple task.

Uniting safety systems
“The problem is that there are a lot of safety systems, but they are standalone, so in the future we will have to combine them,” explains Dr Vera Lauer, coordinator of EASIS.

“We had to collect requirements from the different applications and domains, and to combine them into an integrated safety system,” says Lauer.

Such problems included fitting software and its services to requirements, using cost-efficient hardware solutions on the engine control unit (or ECU) level, and identifying the appropriate processes and tools to develop these systems. There were two specific architectures to address: software and hardware.

“The development partnership AUTOSAR, is dealing with the standardisation of software architecture for automotive applications, so we aligned ourselves to their work, concentrating on safety services,” notes Lauer.

For hardware architecture, EASIS focused on cost-efficient and scalable approaches.

Eliminating unnecessary complexity
The team’s contribution to the standards process for hardware interfaces was a big step forward. Hardware interfaces are the physical connections between components. An agreed standard, which is emerging now, will save a lot of money and eliminate unnecessary complexity.

Next, the team developed a model-based application development approach, called the EASIS Engineering Process (EEP).

The approach is tailored for complex ISS. The research team integrated a dependability framework, which ensures applications are designed to eliminate or mitigate errors and failures.

The EEP covers both hardware and software design and validation and provides common services upon which future applications can be built.

The team verified their results in two demonstrators. In one, they showed the effectiveness of a firewall they developed for telematics systems.

“A lot of emerging safety systems will involve in-car communications and telematics – either with GPS or other cars via wifi,” explains Lauer. “It is vital that the safety of the car cannot be compromised by malicious communication."

The project also demonstrated overall system dependability using a hardware simulator, called hardware-in-loop (or HIL), with an integrated retarder, or intarder. Retarders are hydraulic brakes.

Both cases demonstrated the effectiveness of the EASIS approach, and the work has attracted the interest of the European carmakers and suppliers.

“We kept in close contact with other major European car safety initiatives like PReVENT, AIDE and others,” says Lauer. “It was very successful. We have made a big step towards a working ISS infrastructure for cars.”

And that means that the complex science of car safety systems just got a whole lot simpler, and more dependable.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89735

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>