Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parallel-kinematic LBF® road-street simulator reproduces load standards realistically and shortens test time

09.05.2008
The Fraunhofer LBF, headed by Prof. Dr.-Ing. Holger Hanselka, presents the fully kinematic road-street simulator, its enhanced and worldwide-patented biaxial wheel test technology at the Automotive Testing Expo in Stuttgart.

The newly developed test rig concept realistically reproduces the wheel loads in all degrees of freedom of the vehicle and allows a comprehensive reduction of the test time - compared to real tests on test tracks. In addition the updated simulation software LBF®.DAP, which allows a decrease down to one third of the original test time of complex trials, while retaining the characteristic load profiles.

For engineers in R&D, experimental and virtual test technologies for the design and manufacturing of new vehicles and components are standard tools to improve safety, quality, durability and environmental friendliness of automobiles in a sustainable manner. Therefore, the goal is a sound balance of low weight, reliability and an optimum of cost and resources as well as a reduction of test time to speed up development processes.

"The concept of a fully kinematic wheel test facility represents an entirely new generation of wheel test rig, which follows the tradition of patented ZWARP test, and allows at the same time an improved quality of the laboratory simulation of wheels and hubs for cars." says Rüdiger Heim, head of the competence center Wheel / Hub / Axle at Fraunhofer LBF. The specific characteristics of the wheel-road simulator lie in the field of parallel kinematics, a novel application for wheel test rigs, as well as an internal drum connected directly to the electric motor by a flange. The hexapod platform for the attachment of the wheel and hub allows controlled translational and rotational movement of the wheel in all relevant degrees of freedom and offers an unprecedented flexibility in the use of standardized load programs - such as those offered by Fraunhofer LBF, the work group wheel (Arbeitskreis Räder - AKR) and SAE International.

Furthermore, researchers from the Fraunhofer Institute for Structural Durability and System Reliability LBF show enhanced developments of standard test technologies as well as customized testing methods for:

- the characterization and testing of elastomer components,
- load-stress measurements and analysis during operation,
- testing of trailer coupling systems.
The new testing technologies offer a more realistic and more efficient testing of standard components as well as procedures and methods especially developed and adapted for new materials and components . Virtual simulation plays a decisive role in the reduction of development time and production costs as well as in the improvement of the product life cycle, the utility value, the weight optimization and increase of operational safety. Oliver Ehl, managing director of S & S GmbH, a spin-off company of the Fraunhofer LBF, which creates individual software solutions for the structural and system analysis, developed a computerized method in order to capture the multiple, complex effects and interactions of the parameters which determine the life cycle of wheels (loads, tires, geometry and material).

"Embedded in our software LBF®.WheelStrength, the structural durability assessment of the wheel can be carried out as early on as the predevelopment stage. At the same time the virtual model allows the optimization of the design before even producing the first prototype. This shortens development time and shows specifically where improvements can be made," says Ehl.

Fraunhofer researchers will be informing about further areas of application of new testing technologies in the automotive industry in short lectures in hall 1, booth 1956. The main exhibit is a racing car, on loan from the racing team of the Technical University of Darmstadt, which illustrates the experimental and virtual testing in the automotive industry.

Anke Zeidler-Finsel | Fraunhofer Gesellschaft
Further information:
http://www.lbf.fhg.de/

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>