Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parallel-kinematic LBF® road-street simulator reproduces load standards realistically and shortens test time

09.05.2008
The Fraunhofer LBF, headed by Prof. Dr.-Ing. Holger Hanselka, presents the fully kinematic road-street simulator, its enhanced and worldwide-patented biaxial wheel test technology at the Automotive Testing Expo in Stuttgart.

The newly developed test rig concept realistically reproduces the wheel loads in all degrees of freedom of the vehicle and allows a comprehensive reduction of the test time - compared to real tests on test tracks. In addition the updated simulation software LBF®.DAP, which allows a decrease down to one third of the original test time of complex trials, while retaining the characteristic load profiles.

For engineers in R&D, experimental and virtual test technologies for the design and manufacturing of new vehicles and components are standard tools to improve safety, quality, durability and environmental friendliness of automobiles in a sustainable manner. Therefore, the goal is a sound balance of low weight, reliability and an optimum of cost and resources as well as a reduction of test time to speed up development processes.

"The concept of a fully kinematic wheel test facility represents an entirely new generation of wheel test rig, which follows the tradition of patented ZWARP test, and allows at the same time an improved quality of the laboratory simulation of wheels and hubs for cars." says Rüdiger Heim, head of the competence center Wheel / Hub / Axle at Fraunhofer LBF. The specific characteristics of the wheel-road simulator lie in the field of parallel kinematics, a novel application for wheel test rigs, as well as an internal drum connected directly to the electric motor by a flange. The hexapod platform for the attachment of the wheel and hub allows controlled translational and rotational movement of the wheel in all relevant degrees of freedom and offers an unprecedented flexibility in the use of standardized load programs - such as those offered by Fraunhofer LBF, the work group wheel (Arbeitskreis Räder - AKR) and SAE International.

Furthermore, researchers from the Fraunhofer Institute for Structural Durability and System Reliability LBF show enhanced developments of standard test technologies as well as customized testing methods for:

- the characterization and testing of elastomer components,
- load-stress measurements and analysis during operation,
- testing of trailer coupling systems.
The new testing technologies offer a more realistic and more efficient testing of standard components as well as procedures and methods especially developed and adapted for new materials and components . Virtual simulation plays a decisive role in the reduction of development time and production costs as well as in the improvement of the product life cycle, the utility value, the weight optimization and increase of operational safety. Oliver Ehl, managing director of S & S GmbH, a spin-off company of the Fraunhofer LBF, which creates individual software solutions for the structural and system analysis, developed a computerized method in order to capture the multiple, complex effects and interactions of the parameters which determine the life cycle of wheels (loads, tires, geometry and material).

"Embedded in our software LBF®.WheelStrength, the structural durability assessment of the wheel can be carried out as early on as the predevelopment stage. At the same time the virtual model allows the optimization of the design before even producing the first prototype. This shortens development time and shows specifically where improvements can be made," says Ehl.

Fraunhofer researchers will be informing about further areas of application of new testing technologies in the automotive industry in short lectures in hall 1, booth 1956. The main exhibit is a racing car, on loan from the racing team of the Technical University of Darmstadt, which illustrates the experimental and virtual testing in the automotive industry.

Anke Zeidler-Finsel | Fraunhofer Gesellschaft
Further information:
http://www.lbf.fhg.de/

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>