Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to slash vehicle fuel use

07.05.2008
Task is challenging, requires immediate action

It is possible to slash fuel use by all vehicles on U.S. roads to pre-2000 levels within a few decades, but doing so would require immediate action on several challenging fronts, according to a new analysis by MIT researchers.

Left unchecked, U.S. vehicle fuel use is expected to rise to about 765 billion liters of gasoline equivalent per year by 2035, up 35 percent from 2005, according to the researchers. Their analysis shows, however, that hybrids, plug-in hybrids and other advanced vehicle systems could be incorporated into America's vehicle fleet rapidly enough to make a significant dent in total fuel use by 2035. Reductions would come faster if Americans were to start to use technology improvements to make mainstream gasoline vehicles more fuel efficient, and to adopt measures to slow the growth in demand for vehicles and the distance they travel.

Among the biggest hurdles will be changing consumer expectations. In order to make a dent in fuel use, vehicle makers will have to emphasize fuel efficiency over other vehicle improvements. In other words, consumers will need to understand that next year's model won't necessarily accelerate faster or be bigger than last year's model, but it will get more miles per gallon.

"The magnitude of the changes required to achieve these reductions is daunting, especially as current trends all run counter to those changes," said Anup Bandivadekar, who until recently was a postdoctoral associate in the MIT Energy Initiative and is now an analyst at the International Council on Clean Transportation. John B. Heywood, the Sun Jae Professor of Mechanical Engineering and director of MIT's Sloan Automotive Laboratory, Bandivadekar and others developed the models key to the study.

Research has shed light on future fuel economy and emissions improvements possible with specific technologies. But knowing the potential impact on total fuel use and emissions requires understanding how quickly those technologies are likely to get on the road, how much difference they will make and when.

Bandivadekar and colleagues set out to answer those questions. "Like everyone else, we don't have the ability to predict the future," said Bandivadekar, who received his PhD from MIT's Engineering Systems Division earlier this year. "So we develop various transportation scenarios, each of which combines a number of vehicle technologies, assuming that their market shares grow at different-but plausible-rates between now and 2035. We then assess the impact of each scenario on fleet-wide fuel use and emissions."

Conversely, given a fuel use or emissions target, their methodology can determine plausible pathways for getting there.

The researchers compared fuel use for different scenarios that would meet projected demand for light-duty vehicles between now and 2035. For each, they assumed that half of all technology improvements would be used directly to increase fuel economy, a variable they call "emphasis on reducing fuel consumption," or ERFC.

In the first scenario, by 2035 the advanced technologies considered in the study-turbocharged gasoline, diesels, gasoline hybrids and plug-in hybrids-have gained fractions of the U.S. market, but over a third of all cars sold are still conventional gasoline internal combustion engine vehicles. In the second, battery development stalls, hybrids remain expensive, but turbocharged gasoline and diesel vehicles do well, taking over 75 percent of the market by 2035. The third scenario assumes that hybrids and plug-in hybrids succeed and by 2035 they make up 55 percent of the market.

The hybrid-strong scenario gives the largest cut in fuel use. Further, if combined with 100 percent ERFC, fuel use in 2035 is almost 40 percent lower than it would be if no action were taken.

"Now you're talking really big reductions," Bandivadekar said. "Despite enormous growth in demand, fuel use in 2035 would be lower than it was in 2000."

The overall message? "If our goal is to achieve deep, long-term reductions in fuel use and emissions we should do all these things-increase the ERFC, improve today's engines, increase the market penetration rate of advanced propulsion technologies and find ways to reduce the rate of growth in demand. With that combination we can get very deep cuts by 2035," Bandivadekar said. "To make those things happen, we need strong, long-term policies and we need to adopt them now because the longer we wait the higher the starting point is and the more difficult the task."

Funding came from the Martin Family Society Fellowship for Sustainability, the Ford-MIT Alliance, Concawe, Eni S.p.A., Shell Hydrogen and Environmental Defense.

Written by Nancy Stauffer, MIT Energy Initiative

MIT's Energy Initiative (MITEI) is designed to help transform the global energy system to meet the challenges of the future. This Institute-wide initiative includes research, education, campus energy management and outreach activities, an interdisciplinary approach that covers all areas of energy supply and demand, security and environmental impact.

Nancy Stauffer | MIT News Office
Further information:
http://web.mit.edu/mitei/research/spotlights/hybrids.html
http://web.mit.edu/mitei/

More articles from Automotive Engineering:

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht The Future of Mobility: tomorrow’s ways of getting from A to B
07.09.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>