Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to slash vehicle fuel use

07.05.2008
Task is challenging, requires immediate action

It is possible to slash fuel use by all vehicles on U.S. roads to pre-2000 levels within a few decades, but doing so would require immediate action on several challenging fronts, according to a new analysis by MIT researchers.

Left unchecked, U.S. vehicle fuel use is expected to rise to about 765 billion liters of gasoline equivalent per year by 2035, up 35 percent from 2005, according to the researchers. Their analysis shows, however, that hybrids, plug-in hybrids and other advanced vehicle systems could be incorporated into America's vehicle fleet rapidly enough to make a significant dent in total fuel use by 2035. Reductions would come faster if Americans were to start to use technology improvements to make mainstream gasoline vehicles more fuel efficient, and to adopt measures to slow the growth in demand for vehicles and the distance they travel.

Among the biggest hurdles will be changing consumer expectations. In order to make a dent in fuel use, vehicle makers will have to emphasize fuel efficiency over other vehicle improvements. In other words, consumers will need to understand that next year's model won't necessarily accelerate faster or be bigger than last year's model, but it will get more miles per gallon.

"The magnitude of the changes required to achieve these reductions is daunting, especially as current trends all run counter to those changes," said Anup Bandivadekar, who until recently was a postdoctoral associate in the MIT Energy Initiative and is now an analyst at the International Council on Clean Transportation. John B. Heywood, the Sun Jae Professor of Mechanical Engineering and director of MIT's Sloan Automotive Laboratory, Bandivadekar and others developed the models key to the study.

Research has shed light on future fuel economy and emissions improvements possible with specific technologies. But knowing the potential impact on total fuel use and emissions requires understanding how quickly those technologies are likely to get on the road, how much difference they will make and when.

Bandivadekar and colleagues set out to answer those questions. "Like everyone else, we don't have the ability to predict the future," said Bandivadekar, who received his PhD from MIT's Engineering Systems Division earlier this year. "So we develop various transportation scenarios, each of which combines a number of vehicle technologies, assuming that their market shares grow at different-but plausible-rates between now and 2035. We then assess the impact of each scenario on fleet-wide fuel use and emissions."

Conversely, given a fuel use or emissions target, their methodology can determine plausible pathways for getting there.

The researchers compared fuel use for different scenarios that would meet projected demand for light-duty vehicles between now and 2035. For each, they assumed that half of all technology improvements would be used directly to increase fuel economy, a variable they call "emphasis on reducing fuel consumption," or ERFC.

In the first scenario, by 2035 the advanced technologies considered in the study-turbocharged gasoline, diesels, gasoline hybrids and plug-in hybrids-have gained fractions of the U.S. market, but over a third of all cars sold are still conventional gasoline internal combustion engine vehicles. In the second, battery development stalls, hybrids remain expensive, but turbocharged gasoline and diesel vehicles do well, taking over 75 percent of the market by 2035. The third scenario assumes that hybrids and plug-in hybrids succeed and by 2035 they make up 55 percent of the market.

The hybrid-strong scenario gives the largest cut in fuel use. Further, if combined with 100 percent ERFC, fuel use in 2035 is almost 40 percent lower than it would be if no action were taken.

"Now you're talking really big reductions," Bandivadekar said. "Despite enormous growth in demand, fuel use in 2035 would be lower than it was in 2000."

The overall message? "If our goal is to achieve deep, long-term reductions in fuel use and emissions we should do all these things-increase the ERFC, improve today's engines, increase the market penetration rate of advanced propulsion technologies and find ways to reduce the rate of growth in demand. With that combination we can get very deep cuts by 2035," Bandivadekar said. "To make those things happen, we need strong, long-term policies and we need to adopt them now because the longer we wait the higher the starting point is and the more difficult the task."

Funding came from the Martin Family Society Fellowship for Sustainability, the Ford-MIT Alliance, Concawe, Eni S.p.A., Shell Hydrogen and Environmental Defense.

Written by Nancy Stauffer, MIT Energy Initiative

MIT's Energy Initiative (MITEI) is designed to help transform the global energy system to meet the challenges of the future. This Institute-wide initiative includes research, education, campus energy management and outreach activities, an interdisciplinary approach that covers all areas of energy supply and demand, security and environmental impact.

Nancy Stauffer | MIT News Office
Further information:
http://web.mit.edu/mitei/research/spotlights/hybrids.html
http://web.mit.edu/mitei/

More articles from Automotive Engineering:

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>