Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Can a laser scanner drive a car?

A car that navigates city streets without a driver – steered only by a computer? That might seem impossible to many. But researchers from Fraunhofer and the FU Berlin are presenting such an automated vehicle at this year’s Hannover Messe on April 21 through 25, 2008 (Hall 25, Stand H25). Its core element is a three-dimensional laser scanner.

Can a computer steer a car through a city without a driver’s help? The ‘Spirit of Berlin’, a vehicle developed jointly by researchers at the Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS in Sankt Augustin and their colleagues at the Freie Universität Berlin, proves that it is possible.

The vehicle, which will be on display at this year’s Hannover Messe, made it to the semi-finals of the ‘DARPA Urban Challenge’ competition entirely alone –without a driver or a remote control. The Urban Challenge for unmanned vehicles is organized by the Defense Advanced Research Projects Agency (DARPA), the research arm of the United States Department of Defense. In November 2007, the third edition of the event was held at the site of a former air force base in California for the first time.

One of Spirit of Berlin’s most important sensors is a rotating 3-D laser scanner that was developed at the Fraunhofer IAIS. The scanner classifies the navigable route and is able to distinguish the street from footpaths, parking lots, houses and pedestrians. “The scanner, which is fixed to the roof of the car, constantly moves laser beams back and forth through a mirror on a vertical axis – it moves the laser beam from top to bottom and back again,” explains IAIS project manager Dr. Hartmut Surmann. “If anything gets in the way, such as a pedestrian, the laser beam is reflected and sent back to the scanner.

The software analyzes the information while the car is in motion and steers the vehicle in the right direction. The system comprises two back-to-back laser scanners that rotate in the same way as the flashing lights on police cars and are thus able to ‘see’ all of the car’s surroundings.” The lasers can record two complete images per second. One of the challenges involved is to keep adjusting the recorded values to allow for the distance covered. “At a speed of 36 kilometers per hour, the car moves 10 meters per second. Consequently, the measured data must constantly be adjusted to the car’s current position,” Surmann explains.

Does the new automated vehicle mean that the driver’s license will one day become a thing of the past, and that people can sit back and enjoy the ride without taking notice of traffic? “That’s quite unlikely,” Surman says. “At a price of 17,800 euros, the scanner is much too expensive for use in private vehicles, even though it is significantly cheaper than conventional models. The main purpose of taking part in this competition was to show what computers are capable of doing when they have the right sensors, such as laser scanners and cameras.”

But where are these laser scanners in use today? “Among other things, our laser scanners are applied to assess the visibility of advertising billboards,” says the scientist. The scanner determines from which perspective the billboard is visible, and whether the view is partially obscured by a tree or a streetlight. It also identifies the point from which someone driving by can see the billboard. Within seconds, the laser beam scans the entire area and delivers the desired information at an aperture angle between 120 and 180 degrees – similar to a panoramic photograph. The difference is that a picture does not provide the observer with any information on spaces and distances, but a laser scan does. “This makes it possible to determine quality criteria for the placement of a billboard, which could be reflected in the price. A billboard that can be seen in its entirety from any angle can be rented at a higher price than a board that passers-by can only see from one angle,” says Surmann.

3-D laser scanners can also be beneficial in the realm of freight transport, as they can help determine how much space a transporter has, where street lights are in the way, which bridges are too low and which tunnels are too narrow. While digital street maps do exist, they provide no information about available space. By driving the transport route beforehand in a car that is equipped with a laser scanner, it easy to create an exact model of the surroundings.

According to Surmann, the IAIS 3-D scanner’s biggest advantage is its price: The device only costs a third of what conventional 3-D scanners cost. This has made a number of new applications possible that were previously unprofitable for cost reasons.

Dr. Hartmut Surmann | Fraunhofer-Gesellschaft
Further information:

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>