Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can a laser scanner drive a car?

08.04.2008
A car that navigates city streets without a driver – steered only by a computer? That might seem impossible to many. But researchers from Fraunhofer and the FU Berlin are presenting such an automated vehicle at this year’s Hannover Messe on April 21 through 25, 2008 (Hall 25, Stand H25). Its core element is a three-dimensional laser scanner.

Can a computer steer a car through a city without a driver’s help? The ‘Spirit of Berlin’, a vehicle developed jointly by researchers at the Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS in Sankt Augustin and their colleagues at the Freie Universität Berlin, proves that it is possible.

The vehicle, which will be on display at this year’s Hannover Messe, made it to the semi-finals of the ‘DARPA Urban Challenge’ competition entirely alone –without a driver or a remote control. The Urban Challenge for unmanned vehicles is organized by the Defense Advanced Research Projects Agency (DARPA), the research arm of the United States Department of Defense. In November 2007, the third edition of the event was held at the site of a former air force base in California for the first time.

One of Spirit of Berlin’s most important sensors is a rotating 3-D laser scanner that was developed at the Fraunhofer IAIS. The scanner classifies the navigable route and is able to distinguish the street from footpaths, parking lots, houses and pedestrians. “The scanner, which is fixed to the roof of the car, constantly moves laser beams back and forth through a mirror on a vertical axis – it moves the laser beam from top to bottom and back again,” explains IAIS project manager Dr. Hartmut Surmann. “If anything gets in the way, such as a pedestrian, the laser beam is reflected and sent back to the scanner.

The software analyzes the information while the car is in motion and steers the vehicle in the right direction. The system comprises two back-to-back laser scanners that rotate in the same way as the flashing lights on police cars and are thus able to ‘see’ all of the car’s surroundings.” The lasers can record two complete images per second. One of the challenges involved is to keep adjusting the recorded values to allow for the distance covered. “At a speed of 36 kilometers per hour, the car moves 10 meters per second. Consequently, the measured data must constantly be adjusted to the car’s current position,” Surmann explains.

Does the new automated vehicle mean that the driver’s license will one day become a thing of the past, and that people can sit back and enjoy the ride without taking notice of traffic? “That’s quite unlikely,” Surman says. “At a price of 17,800 euros, the scanner is much too expensive for use in private vehicles, even though it is significantly cheaper than conventional models. The main purpose of taking part in this competition was to show what computers are capable of doing when they have the right sensors, such as laser scanners and cameras.”

But where are these laser scanners in use today? “Among other things, our laser scanners are applied to assess the visibility of advertising billboards,” says the scientist. The scanner determines from which perspective the billboard is visible, and whether the view is partially obscured by a tree or a streetlight. It also identifies the point from which someone driving by can see the billboard. Within seconds, the laser beam scans the entire area and delivers the desired information at an aperture angle between 120 and 180 degrees – similar to a panoramic photograph. The difference is that a picture does not provide the observer with any information on spaces and distances, but a laser scan does. “This makes it possible to determine quality criteria for the placement of a billboard, which could be reflected in the price. A billboard that can be seen in its entirety from any angle can be rented at a higher price than a board that passers-by can only see from one angle,” says Surmann.

3-D laser scanners can also be beneficial in the realm of freight transport, as they can help determine how much space a transporter has, where street lights are in the way, which bridges are too low and which tunnels are too narrow. While digital street maps do exist, they provide no information about available space. By driving the transport route beforehand in a car that is equipped with a laser scanner, it easy to create an exact model of the surroundings.

According to Surmann, the IAIS 3-D scanner’s biggest advantage is its price: The device only costs a third of what conventional 3-D scanners cost. This has made a number of new applications possible that were previously unprofitable for cost reasons.

Dr. Hartmut Surmann | Fraunhofer-Gesellschaft
Further information:
http://www.fraunhofer.de

More articles from Automotive Engineering:

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Spinning rugby balls: The rotation of the most massive galaxies

23.05.2018 | Physics and Astronomy

Raiding the rape field

23.05.2018 | Agricultural and Forestry Science

Turning entanglement upside down

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>