Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tooling up for tomorrow’s clever cars

29.02.2008
Cars are becoming more complex, with a range of advanced features we could hardly have imagined a few years ago made possible by sophisticated software-driven electronics. The downside is, with more to go wrong, more is going wrong, but European researchers have developed an antidote: a new computer language.

The average new car coming off the production line today has the same amount of electronic systems as a commercial airliner did two decades ago. Hard to accept perhaps, but true if auto-makers are to be believed.

Growth in automotive embedded systems (software and electronics) has been exponential since the early 1990s and the trend is predicted to continue. In 2002, electronic parts comprised 25 percent of a vehicle’s value – by 2015, car manufacturers predict this will hit 40 percent.

But the more electronic systems are added, the more they contribute to vehicle breakdowns and recalls. Researchers on the European ATESST project say a substantial share of vehicle failures today can be directly attributed to embedded systems, and field data indicates this share is increasing by several percent a year. This will reach unacceptable levels if no preventative action plan is put in place.

However the EU-funded, two-year project, which comes to an end when it presents its findings at a workshop in Brussels on 3 March this year, has developed an Architecture Description Language (ADL) aimed at improving methodology to handle component failures and avoid design flaws.

Binding them all
“New tools are needed to do a job which is becoming ever more complex,” says project coordinator Henrik Lönn. “The many components which go into vehicles are being made by a host of manufacturers, often using different processes and working to different standards.”

A common language at the top level is needed to bind them together, he says.

There have been a number of important initiatives, including the European-developed AUTOSAR standard, which is used by many component suppliers and is on its way to becoming a de facto international standard. Also in common usage are off-the-shelf UML2 modelling tools which are not specific to the auto industry.

“But this is still not enough,” he stresses. “What we have developed is an industry-specific system which works with these other standards and dictates what part of the system is performing what function, and makes sure the different components will work together.”

The problem is, despite the huge strides in electronics, until now not enough attention has been paid to the big picture. When the manufacturer gets a component from a supplier, no matter how sophisticated it might be, it comes with a text file which describes the system for the manufacturer’s engineers.

The EAST-ADL2 language the ATESST project has been developing enables the computer modelling of systems. Instead of the old-fashioned text file, a supplier can now provide a computer model of his system to the manufacturer who can then immediately integrate it into the overall design.

“What this does is to give the manufacturer a complete picture at a much earlier point in proceedings than is possible at the moment,” says Lönn. “You don’t have to wait for all the electronics and software to be ready and assembled, but can do your analysis at a much earlier stage.”

Clean, green mean machines
With a holistic view available much earlier than was previously possible, late-phase integration – where failure is both common and costly – is avoided and the chance of design errors, which are felt by car buyers, is minimised.

“Complex programs, like active safety functions, involve many systems and components. But we are at the stage now where it is becoming difficult to improve them without first improving our methodology, which is the purpose of EAST-ADL2.”

As well as the economic imperative to develop the new methodology, pressure will also come in the form of a new standard, ISO26262, controlling improvements in all the safety aspects of vehicles.

“This standard will put stringent requirements on the development of safety systems which means manufacturers will have to be more rigorous. Having the EAST-ADL2 language to work with will make this possible,” says Lönn.

“There is also pressure to build more environmentally-friendly cars and, to get the best environmental performance, optimised systems which are integrated and work properly together are needed,” he says.

With the development work over, the challenge now is to get the auto industry to accept EAST-ADL2 as a de facto standard. But the advantages to everybody are so obvious Lönn feels they will be adopted in one form or another. Indeed, he believes concepts from the project provide the basis for vehicles that are safer, greener, more fuel efficient, more reliable and more intelligent than would have been thought possible just a few short years ago.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89579

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>