Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Preventing traffic accidents before they happen?

A new automotive safety systems built by European researchers will alert drivers to potential hazards by using information from the car, other road users and the roadside infrastructure to predict and prevent traffic accidents.

Scientists and researchers across Europe are working in concert to build a new automotive system that fuses information from a wide variety of sources to predict hazardous situations that could lead to an accident.

The system will give drivers early warning of accidents waiting to happen, and thus help drivers avoid crashes and other problems.

A novelty of the system is that it uses comparatively simple and low-cost technologies, many of which already exist. By combining the various information streams and analysing them for potential problems, the researchers hope to develop a powerful safety system that can be deployed rapidly and at little cost.

“We use information from in-vehicle sensors, car-to-car communication and communication with roadside infrastructure to create a picture of driving conditions in real time,” explains Andrea Migliavacca, coordinator of the I-WAY project.

Notable successes

The EU-funded project still has some time to go before completing, but it has already scored a number of notable research successes.

“We are very pleased with our video system for road observation,” reveals Migliavacca. “Our partners wanted a simple, low-maintenance and easy to install unit that could still provide useful information, and we have developed a unit that responds to their needs. They’re very happy with it.”

The external video is used to ensure the driver stays in the correct lane and is one of a series of subsystems used in the I-WAY platform. Some parts, like the radar, have come off the shelf, while other elements, such as the car-to-car communication, were supplied by other European research.

“We did not try to reinvent the wheel,” says Migliavacca. “If there was another European project working on a system we could use, we took that. So we got the car-to-car communication technology from the ‘Car to Car’ communications consortium. They have done a lot of work on this area that we benefited from.”

Recruiting scouts

Car-to-car information turns other road users into scouts. If another car encounters a hazard, it can broadcast that information to nearby vehicles. Similarly, roadside sensors and communication systems, used by the highway control centre to track road conditions, can transmit important information to drivers as they pass by.

Then can warn of oncoming lane closures, temporarily lowered speed limits, road conditions and traffic jams, among others.

Internal sensors complete the package of subsystems. The team developed in-car cameras to monitor the driver as well as grip and electrocardiogram (ECG) sensors on the steering wheel.

The grip and ECG sensors, combined with the eye-tracking internal camera, can reveal the state of the driver, if he or she is stressed, for example.

Situation assessment

I-WAY has completed the first generation of the basic subsystems, and over the coming months it will integrate these systems and test the control software. “This is a situation assessment software, basing its assessment on the information from all the various sensors,” reveals Migliavacca.

“It is primarily intended for highway driving and it is not aimed at accident mitigation, rather it is intended to anticipate hazardous situations and help prevent accidents.”

The computer that will run the assessment software is another early success of the project. “It is a stack computer,” Migliavacca explains. “It is special hardware to manage all the inputs. It is a very good, well engineered solution and it is so successful that it is already available on the market and selling quite well.”

Migliavacca takes particular pride in this result, noting that it is unusual to develop commercially successful technology midway through a project.

In addition to the integration work, the project will continue to improve the basic subsystems.

Christian Nielsen | alfa
Further information:

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>