Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing traffic accidents before they happen?

10.11.2008
A new automotive safety systems built by European researchers will alert drivers to potential hazards by using information from the car, other road users and the roadside infrastructure to predict and prevent traffic accidents.

Scientists and researchers across Europe are working in concert to build a new automotive system that fuses information from a wide variety of sources to predict hazardous situations that could lead to an accident.

The system will give drivers early warning of accidents waiting to happen, and thus help drivers avoid crashes and other problems.

A novelty of the system is that it uses comparatively simple and low-cost technologies, many of which already exist. By combining the various information streams and analysing them for potential problems, the researchers hope to develop a powerful safety system that can be deployed rapidly and at little cost.

“We use information from in-vehicle sensors, car-to-car communication and communication with roadside infrastructure to create a picture of driving conditions in real time,” explains Andrea Migliavacca, coordinator of the I-WAY project.

Notable successes

The EU-funded project still has some time to go before completing, but it has already scored a number of notable research successes.

“We are very pleased with our video system for road observation,” reveals Migliavacca. “Our partners wanted a simple, low-maintenance and easy to install unit that could still provide useful information, and we have developed a unit that responds to their needs. They’re very happy with it.”

The external video is used to ensure the driver stays in the correct lane and is one of a series of subsystems used in the I-WAY platform. Some parts, like the radar, have come off the shelf, while other elements, such as the car-to-car communication, were supplied by other European research.

“We did not try to reinvent the wheel,” says Migliavacca. “If there was another European project working on a system we could use, we took that. So we got the car-to-car communication technology from the ‘Car to Car’ communications consortium. They have done a lot of work on this area that we benefited from.”

Recruiting scouts

Car-to-car information turns other road users into scouts. If another car encounters a hazard, it can broadcast that information to nearby vehicles. Similarly, roadside sensors and communication systems, used by the highway control centre to track road conditions, can transmit important information to drivers as they pass by.

Then can warn of oncoming lane closures, temporarily lowered speed limits, road conditions and traffic jams, among others.

Internal sensors complete the package of subsystems. The team developed in-car cameras to monitor the driver as well as grip and electrocardiogram (ECG) sensors on the steering wheel.

The grip and ECG sensors, combined with the eye-tracking internal camera, can reveal the state of the driver, if he or she is stressed, for example.

Situation assessment

I-WAY has completed the first generation of the basic subsystems, and over the coming months it will integrate these systems and test the control software. “This is a situation assessment software, basing its assessment on the information from all the various sensors,” reveals Migliavacca.

“It is primarily intended for highway driving and it is not aimed at accident mitigation, rather it is intended to anticipate hazardous situations and help prevent accidents.”

The computer that will run the assessment software is another early success of the project. “It is a stack computer,” Migliavacca explains. “It is special hardware to manage all the inputs. It is a very good, well engineered solution and it is so successful that it is already available on the market and selling quite well.”

Migliavacca takes particular pride in this result, noting that it is unusual to develop commercially successful technology midway through a project.

In addition to the integration work, the project will continue to improve the basic subsystems.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90166

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>