Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ORNL Strengthens DOE-Funded Clean Vehicles Team

As a member of the recently announced clean vehicles consortium, part of the U.S.-China Clean Energy Research Center, Oak Ridge National Laboratory researchers are focusing on a suite of technologies to put more electric and hybrid vehicles on the road.

Working with the University of Michigan, which leads the consortium announced by the Department of Energy, ORNL will contribute in the areas of advanced systems integration, vehicle electrification, batteries and energy storage, characterization, optimization and combustion of biofuels and lightweighting structures, said Robert Wagner of ORNL’s Energy and Transportation Science Division.

Government funding for the Clean Energy Research Center totals $25 million, with the clean vehicles and clean coal consortia, announced the same day, each to receive $12.5 million over the next five years. The funding is to be matched by the grantees.

In announcing the consortia, Energy Secretary Steven Chu said, “The U.S.-China Clean Energy Research Center will help accelerate the development and deployment of clean vehicle and clean coal technologies here at home. This new partnership will also create new export opportunities for American companies, ensure the United States remains at the forefront of technology innovation and help to reduce global carbon pollution.”

While levels of funding are to be determined, Wagner envisions the collaboration strengthening partnerships and speeding the effort. Core partners include Ohio State University, Massachusetts Institute of Technology, Sandia National Laboratories and the Joint BioEnergy Institute, which will partner with several Chinese entities.

“Numerous other industrial partners have committed to contributing to the Clean Energy Research Center with funding or in-kind and many additional companies have expressed interest,” Wagner said.

In the clean vehicle proposal to DOE, the team wrote that the center aims to have an impact on three of society’s grand challenges: climate change, energy security and environmental sustainability.

“The strategic intent of the Clean Energy Research Center clean vehicles consortium is to forge a strong partnership between the U.S. and China, the largest greenhouse gas emitters and the largest existing and emerging vehicle markets, for breakthrough research and development,” the proposal stated.

The hope is that this effort will facilitate joint research and development of clean energy technologies by the U.S. and China.

Other members of the clean vehicles team are General Motors, Ford, Toyota, Chrysler, Cummins, Fraunhofer, MAGNET, A123, American Electric Power, First Energy and the Transportation Research Center.

The $25 million in U.S. government funding will be used to support work conducted by U.S. institutions and individuals only. More information about the center can be found here:

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Ron Walli | Newswise Science News
Further information:

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>