Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimizing Electric Motors for Cars and Aircraft

22.12.2011
Siemens Corporate Technology and partners are pursuing research projects aimed at improving the range and efficiency of electric motors.

The project Plug&Play Range Extender is examining how a module made of a small, fuel-efficient combustion engine and an alternator can increase the range of electric cars. In the project PELiKAn (a German acronym for the phrase "Power Electronics in Motor Vehicles and Aeronautics), the aim is to use highly efficient power electronics to improve efficiency in aircraft and motor vehicles. Both projects are receiving support from the German Federal Ministry of Education and Research (BMBF).


As the electrification of aircraft and motor vehicles gains ground, factors like the efficiency, required installation space, and weight of individual components are playing a crucial role. Power transformers are key components for which ever higher switching frequencies are required. At present, the energy required for the activation of a power switch is lost, which limits the maximum efficiency to 95 percent.

The partners in the PELiKAn project are therefore working to develop compact and reliable voltage transformers with an efficiency of up to 99 percent. The aim is to achieve this level of efficiency with "regenerative drive circuits," which reduce the drive power needed by storing energy in a buffer. Researchers also expect that new types of semiconductor materials, such as silicon carbide, and higher maximum operating temperatures will further reduce the switching losses and forward losses experienced by switches.

Siemens is working on the three-year PELiKAn project with partners Daimler, EADS, Infineon, ZF Electronics, and the Fraunhofer Institute for Integrated Systems. The scientists of the global Siemens research department Corporate Technology are particularly focused on new switching concepts and on regulation and control technologies.

In the project Plug&Play Range Extender, the consortium of FEV, Siemens, Daimler, and the RWTH Aachen University will first define the requirements for a large-scale integrated Range Extender Module. In addition, marketable automotive designs will be drawn up. In a later phase, a vehicle with the Range Extender Module will then be built.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Automotive Engineering:

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Pioneering joining technology for high performance hybrid automotive parts
18.12.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New material could advance superconductivity

28.07.2016 | Materials Sciences

CO2 can be stored underground for 10 times the length needed to avoid climatic impact

28.07.2016 | Earth Sciences

The intravenous swim team

28.07.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>