Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Normal air could halve fuel consumption

07.02.2011
Every time a car brakes, energy is generated. At present this energy is not used, but new research shows that it is perfectly possible to save it for later use in the form of compressed air. It can then provide extra power to the engine when the car is started and save fuel by avoiding idle operation when the car is at a standstill.

Air hybrids, or pneumatic hybrids as they are also known, are not yet in production. Nonetheless, electric cars and electric hybrid cars already make use of the brake energy, to power a generator that charges the batteries.

However, according to Per Tunestål, a researcher in Combustion Engines at Lund University in Sweden, air hybrids would be much cheaper to manufacture. The step to commercialisation does not have to be a large one.

“The technology is fully realistic. I was recently contacted by a vehicle manufacturer in India which wanted to start making air hybrids”, he says.

The technology is particularly attractive for jerky and slow driving, for example for buses in urban traffic.

“My simulations show that buses in cities could reduce their fuel consumption by 60 per cent”, says Sasa Trajkovic, a doctoral student in Combustion Engines at Lund University who recently defended a thesis on the subject.

Sasa Trajkovic also calculated that 48 per cent of the brake energy, which is compressed and saved in a small air tank connected to the engine, could be reused later. This means that the degree of reuse for air hybrids could match that of today’s electric hybrids. The engine does not require any expensive materials and is therefore cheap to manufacture. What is more, it takes up much less space than an electric hybrid engine. The method works with petrol, natural gas and diesel.

For this research the Lund researchers have worked with the Swedish company Cargine, which supplies valve control systems.

The idea of air hybrids was initially hit upon by Ford in the 1990s, but the American car company quickly shelved the plans because it lacked the necessary technology to move forward with the project. Today, research on air hybrids is conducted at ETH in Switzerland, Orléans in France and Lund University in Sweden. One company that intends to invest in engines with air hybrid technology is the American Scuderi. However, their only results so far have been from simulations, not from experiments.

“This is the first time anyone has done experiments in an actual engine. The research so far has only been theoretical. In addition, we have used data that means we get credible driving cycle results, for example data from the driving patterns of buses in New York”, says Sasa Trajkovic.

The researchers in Lund hope that the next step will be to convert their research results from a single cylinder to a complete, multi-cylinder engine. They would thus be able to move the concept one step closer to a real vehicle.

For more information, please contact Per Tunestål, reader in Combustion Engines, +46 46 222 42 08, +46 76 2457422, Per.Tunestal@energy.lth.se or Sasa Trajkovic (who has just started work as a development engineer at Volvo) +46 763 161804, strajko4@volvocars.com.

Kristina Lindgärde | idw
Further information:
http://www.lu.se/o.o.i.s?id=12588&postid=1748970

More articles from Automotive Engineering:

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht The Future of Mobility: tomorrow’s ways of getting from A to B
07.09.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>