Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New ORNL Electric Vehicle Technology Packs More Punch in Smaller Package


Using 3-D printing and novel semiconductors, researchers at the Department of Energy’s Oak Ridge National Laboratory have created a power inverter that could make electric vehicles lighter, more powerful and more efficient.

ORNL's 30-kilowatt power inverter offers greater reliability and power in a compact package.

Source: ORNL

At the core of this development is wide bandgap material made of silicon carbide with qualities superior to standard semiconductor materials. Power inverters convert direct current into the alternating current that powers the vehicle. The Oak Ridge inverter achieves much higher power density with a significant reduction in weight and volume.

“Wide bandgap technology enables devices to perform more efficiently at a greater range of temperatures than conventional semiconductor materials,” said ORNL’s Madhu Chinthavali, who led the Power Electronics and Electric Machinery Group on this project. “This is especially useful in a power inverter, which is the heart of an electric vehicle.”

Specific advantages of wide bandgap devices include: higher inherent reliability; higher overall efficiency; higher frequency operation; higher temperature capability and tolerance; lighter weight, enabling more compact systems; and higher power density.

Additive manufacturing helped researchers explore complex geometries, increase power densities, and reduce weight and waste while building ORNL’s 30-kilowatt prototype inverter.

“With additive manufacturing, complexity is basically free, so any shape or grouping of shapes can be imagined and modeled for performance,” Chinthavali said. “We’re very excited about where we see this research headed.”

Using additive manufacturing, researchers optimized the inverter’s heat sink, allowing for better heat transfer throughout the unit. This construction technique allowed them to place lower-temperature components close to the high-temperature devices, further reducing the electrical losses and reducing the volume and mass of the package.

Another key to the success is a design that incorporates several small capacitors connected in parallel to ensure better cooling and lower cost compared to fewer, larger and more expensive “brick type” capacitors.

The research group’s first prototype, a liquid-cooled all-silicon carbide traction drive inverter, features 50 percent printed parts. Initial evaluations confirmed an efficiency of nearly 99 percent, surpassing DOE’s power electronics target and setting the stage for building an inverter using entirely additive manufacturing techniques.

Building on the success of this prototype, researchers are working on an inverter with an even greater percentage of 3-D printed parts that’s half the size of inverters in commercially available vehicles. Chinthavali, encouraged by the team’s results, envisions an inverter with four times the power density of their prototype.

Others involved in this work, which was to be presented today at the Second Institute of Electrical and Electronics Engineers Workshop on Wide Bandgap Power Devices and Applications in Knoxville, were Curt Ayers, Steven Campbell, Randy Wiles and Burak Ozpineci.

Research for this project was conducted at ORNL’s National Transportation Research Center and Manufacturing Demonstration Facility, DOE user facilities, with funding from DOE’s Office of Energy Efficiency and Renewable Energy.

UT-Battelle manages ORNL for the Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Contact Information

Ron Walli
Oak Ridge National Laboratory
(865) 576-0226;

Ron Walli | newswise

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>