Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanocomposites toughen up

29.09.2014

An alternative fabrication route improves the properties of aluminum-based nanocomposites with great potential for vehicles of the future

One challenge in producing strong, elastic and hard-wearing nanocomposites is obtaining an even distribution of the nanoparticles in the metal matrix. Now, researchers at A*STAR have used a process known as friction stir processing (see image) to produce an evenly distributed mix of nanosized aluminum oxide (Al2O3) particles in aluminum1. Their technique is a viable new method for manufacturing nanocomposites and has exciting potential for the car, space and defense industries.


Schematic diagram of friction stir processing, a method used to improve the hardness and tensile strength of aluminum-based nanocomposites.

Copyright : © 2014 A*STAR Singapore Institute of Manufacturing Technology

“Current powder metallurgy or liquid processing methods fail to achieve uniform processing,” says research leader Junfeng Guo, who is from the A*STAR Singapore Institute of Manufacturing Technology.

Guo’s team drilled hundreds of 1-millimeter-diameter holes into the surface of a thin sheet of an aluminum alloy. They then injected a slurry of aluminum oxide nanoparticles into the holes and heated the sheet in an oven. After cooling the sheet, the team plunged a rotating tool into it — this is the friction stir processing step. The friction generated between the tool and the sheet caused the material to plasticize. The tool was moved around to ensure that the entire sheet was plasticized.

Placing the nanoparticles in the sheet prior to the friction stir processing step significantly increased the concentration of nanoparticles in the composite. “It also reduced the amount of airborne particles produced during powder placement and friction stir processing,” explains Guo.

The team used scanning electron microscopy to check two key properties that influence the strength of nanocomposites. They first demonstrated that the nanoparticles were uniformly dispersed, which means the material has no weak points. They also found that the grains or crystals of the aluminum matrix that recrystallized after being plasticized were extremely small; smaller aluminum matrix grains can flow past each other more smoothly than larger particles, enhancing the strength of the material.

By measuring the grain size after performing friction stir processing with and without the Al2O3 nanoparticles, the team showed that the nanoparticles contributed to the reduction in grain size.

The best nanoparticle distribution and smallest aluminum alloy grains were obtained after passing the rotating tool through the sheet four times. The team then demonstrated that the composite made in this way had significantly improved hardness and tensile strength compared to untreated aluminum alloy sheets.

“We plan to continue this research to further improve the mechanical and thermal properties as well as the wear resistance of the nanocomposites,” says Guo. “Eventually, we aim to commercialize our technology to aid local industry.”


Reference:
Guo, J. F., Liu, J., Sun, C. N., Maleksaeedi, S., Bi, G. et al. Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al. Materials Science and Engineering: A 602, 143–149 (2014) |

Associated links

A*STAR Research | Research SEA News
Further information:
http://www.researchsea.com

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Error-free into the Quantum Computer Age

18.12.2017 | Physics and Astronomy

Disarray in the brain

18.12.2017 | Studies and Analyses

2 million euros in funding for new MR-compatible electrophysiological brain implants

18.12.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>