Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Motion Control Keeps Electric Car’s Four Wheels—and Four Motors—on the Road

24.01.2013
It weighs half as much as a sports car, and turns on a dime—so its no surprise that the electric car being developed at Ohio State University needs an exceptional traction and motion control system to keep it on the road.

With four wheels that turn independently, each with its own built-in electric motor and set of batteries, the experimental car is the only one of its kind outside of commercial carmakers’ laboratories.


An experimental electric car under development at Ohio State University. Photo by Junmin Wang, Courtesy of Ohio State University.

“It is considered one of the promising future vehicle architectures,” said Junmin Wang, assistant professor of mechanical engineering and Director of the Vehicle Systems and Control Laboratory at Ohio State. “It would make a good in-city car—efficient and maneuverable, with no emissions. Our task is to make a robust control system to keep it safe and reliable.”

In a paper in the January 2013 issue of the journal Control Engineering Practice, his team described the car’s ability to follow a specific trajectory.

In tests on good road conditions at the Transportation Research Center in East Liberty, Ohio, the car followed a driver’s desired path within four inches (10 cm). To test slippery road conditions, the researchers took the car to an empty west campus parking lot on a snowy day. There, the car maneuvered with an accuracy of up to eight inches (20 cm), and the vehicle traction and motion control system prevented “fishtailing” through independent control of the left and right sides of the car.

Wang characterized these results as more accurate than a conventional car, though the comparison is hard to make, given that conventional cars are much more limited in maneuverability by the transmission and differential systems that link the wheels together mechanically. The four independent wheels of the electric car give drivers greater control and more freedom of movement.

The experimental car also weighs half as much as a conventional car—only 800 kg, or a little over 1,750 pounds—because it contains no engine, no transmission, and no differential. The researchers took a commercially available sport utility vehicle chassis and removed all those parts, and added a 7.5 kW electric motor to each wheel and a 15 kW lithium-ion battery pack. A single electrical cable connects the motors to a central computer.

One hundred times a second, the onboard computer samples input data from the steering wheel, gas pedal and brake and calculates how each wheel should respond. Because the wheels are independent, one or more can brake while the others accelerate, providing enhanced traction and motion control.

In fact, a driver who is accustomed to conventional cars would have a difficult time driving a car of this experimental design, known as a “four-wheel independently actuated” (FIWA) car without the help of the vehicle motion and traction control system. With its ability to turn sharply and change direction very quickly, the car could be hard to control. Wang has tried it.

“Without the controller, it’s very hard to drive. With the controller, it’s quite nice—quiet, and better control than commercial four-wheel drive,” he said.

The main challenge for his team—which consists of bachelor’s, master’s, and doctoral students as well as a few local high school students—is to make the whole traction and motion control system energy-efficient and fault-tolerant, so if one wheel, motor or brake malfunctions, the others can compensate for it and maintain safety. It’s a situation analogous to a multi-engine plane losing an engine: the other engines have to adjust thrust and angle to keep the plane safe and on course.

Future work will concern the FIWA car’s energy efficiency for increasing its travel range in urban environments, and optimizing the weight distribution in the car.

Wang estimates that we won’t see a FIWA car on the road for another 5-10 years, as researchers continue to develop new algorithms to control the car more efficiently and add more safety features.

The coauthor on the paper was Rongrong Wang, a doctoral student in mechanical engineering, and the team’s high school participants came from the Columbus Metro School, a state of Ohio public STEM (science, technology, engineering, math) high school open to students from around the state.

This research was supported by Junmin Wang’s awards from the Office of Naval Research Young Investigator Program (2009) and the National Science Foundation’s Faculty Early Career Development Program (2012); the Honda-OSU Partnership program; and the OSU Transportation Research Endowment Program.

Contact: Junmin Wang, (614) 247-7275; Wang.1381@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Editor’s note: a photograph of the experimental FIWA car is available from Pam Frost Gorder.

Pam Frost Gorder | EurekAlert!
Further information:
http://www.osu.edu

More articles from Automotive Engineering:

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>