Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Motion Control Keeps Electric Car’s Four Wheels—and Four Motors—on the Road

24.01.2013
It weighs half as much as a sports car, and turns on a dime—so its no surprise that the electric car being developed at Ohio State University needs an exceptional traction and motion control system to keep it on the road.

With four wheels that turn independently, each with its own built-in electric motor and set of batteries, the experimental car is the only one of its kind outside of commercial carmakers’ laboratories.


An experimental electric car under development at Ohio State University. Photo by Junmin Wang, Courtesy of Ohio State University.

“It is considered one of the promising future vehicle architectures,” said Junmin Wang, assistant professor of mechanical engineering and Director of the Vehicle Systems and Control Laboratory at Ohio State. “It would make a good in-city car—efficient and maneuverable, with no emissions. Our task is to make a robust control system to keep it safe and reliable.”

In a paper in the January 2013 issue of the journal Control Engineering Practice, his team described the car’s ability to follow a specific trajectory.

In tests on good road conditions at the Transportation Research Center in East Liberty, Ohio, the car followed a driver’s desired path within four inches (10 cm). To test slippery road conditions, the researchers took the car to an empty west campus parking lot on a snowy day. There, the car maneuvered with an accuracy of up to eight inches (20 cm), and the vehicle traction and motion control system prevented “fishtailing” through independent control of the left and right sides of the car.

Wang characterized these results as more accurate than a conventional car, though the comparison is hard to make, given that conventional cars are much more limited in maneuverability by the transmission and differential systems that link the wheels together mechanically. The four independent wheels of the electric car give drivers greater control and more freedom of movement.

The experimental car also weighs half as much as a conventional car—only 800 kg, or a little over 1,750 pounds—because it contains no engine, no transmission, and no differential. The researchers took a commercially available sport utility vehicle chassis and removed all those parts, and added a 7.5 kW electric motor to each wheel and a 15 kW lithium-ion battery pack. A single electrical cable connects the motors to a central computer.

One hundred times a second, the onboard computer samples input data from the steering wheel, gas pedal and brake and calculates how each wheel should respond. Because the wheels are independent, one or more can brake while the others accelerate, providing enhanced traction and motion control.

In fact, a driver who is accustomed to conventional cars would have a difficult time driving a car of this experimental design, known as a “four-wheel independently actuated” (FIWA) car without the help of the vehicle motion and traction control system. With its ability to turn sharply and change direction very quickly, the car could be hard to control. Wang has tried it.

“Without the controller, it’s very hard to drive. With the controller, it’s quite nice—quiet, and better control than commercial four-wheel drive,” he said.

The main challenge for his team—which consists of bachelor’s, master’s, and doctoral students as well as a few local high school students—is to make the whole traction and motion control system energy-efficient and fault-tolerant, so if one wheel, motor or brake malfunctions, the others can compensate for it and maintain safety. It’s a situation analogous to a multi-engine plane losing an engine: the other engines have to adjust thrust and angle to keep the plane safe and on course.

Future work will concern the FIWA car’s energy efficiency for increasing its travel range in urban environments, and optimizing the weight distribution in the car.

Wang estimates that we won’t see a FIWA car on the road for another 5-10 years, as researchers continue to develop new algorithms to control the car more efficiently and add more safety features.

The coauthor on the paper was Rongrong Wang, a doctoral student in mechanical engineering, and the team’s high school participants came from the Columbus Metro School, a state of Ohio public STEM (science, technology, engineering, math) high school open to students from around the state.

This research was supported by Junmin Wang’s awards from the Office of Naval Research Young Investigator Program (2009) and the National Science Foundation’s Faculty Early Career Development Program (2012); the Honda-OSU Partnership program; and the OSU Transportation Research Endowment Program.

Contact: Junmin Wang, (614) 247-7275; Wang.1381@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Editor’s note: a photograph of the experimental FIWA car is available from Pam Frost Gorder.

Pam Frost Gorder | EurekAlert!
Further information:
http://www.osu.edu

More articles from Automotive Engineering:

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>