Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mass production micro-hybrid technology set to cut emissions and fuel use in cars

The EUREKA E! 3734 i-StARS project is developing a compact, fully integrated and low-cost start-stop system for cars to replace conventional alternators in mass production.

This second-generation starter alternator reversible system (StARS) is intended to enable the European automotive industry to meet new EU emissions legislation and significantly reduce fuel consumption without needing to redesign the engine.

Additionally, it will fulfil global demands for more energy-efficient vehicles. Market forecasts indicate some one million vehicles a year will be using these systems by 2010 with a 4% penetration rate worldwide in the automotive market for such micro-hybrid applications in 2015.

European Union legislation is set to reduce average carbon-dioxide (CO2) emissions for new cars from the current 160 g/km to 130 g/km in 2012. This will lead to a 19% reduction in CO2 emissions and place the EU among the world leaders in fuel-efficient cars. The proposal is also intended to benefit consumers through important fuel savings.

Results of the EUREKA i-StARS project will help enable the automotive industry to meet these new regulations effectively. “Not only will it be possible to reduce consumption emissions without any major change to engine design, but this translates into a 6% saving in fuel use for the car driver,” says Derek de Bono, marketing director of project leader Valeo Electrical Systems in France. Valeo is one of the world's leading automotive suppliers, providing a range of components and integrated systems for cars and lorries.

Hybridisation offers innovative solutions

Hybrid solutions have to be as minimally intrusive as possible in standard mass-produced power trains for cars. This calls for a high level of integration between the electrical machine assisting the internal combustion engine and its associated power and control electronics. Such a high level of integration imposes harsh thermo-mechanical constraints on the whole system, making it difficult, if not impossible, to use standard electronic assembly technologies. While robust electronics have been developed for railway and industrial applications, they do not correspond to automotive industrial requirements in terms of flexibility, yield and cost.

A first generation of alternator-based 'stop-start' systems developed by Valeo has already been in serial production with Citroen since 2004, on Smart cars since 2007 and on Mercedes-Benz A- and B-class vehicles as of the first quarter of 2009. This system performs a comfortable stop-start function that is completely transparent to the driver: the belt-driven starter-alternator system shuts down the engine during idle phases and restarts the engine quickly and silently on request. As a result, there is no fuel consumption, gas emission, vibration or noise at standstill. In the European standard driving cycle, fuel consumption is reduced by 6%; while in congested urban traffic, savings of up to 25% have been observed.

However, Valeo was keen to reduce the size of the micro-hybrid system to a single integrated package combining the alternator and all the power and control electronics required. In the current design, the electronics need a separate box.

Seeking external expertise

As Valeo had no in-house microelectronics capacity, it decided to set up a EUREKA project with two microelectronics partners: ON Semiconductors – formerly AMI Semiconductors – in Belgium for the two application-specific integrated circuits (ASICs) controlling and driving the system; and Freescale in France for the power-switching transistors. Valeo itself took the responsibility for the assembly of the mechatronics unit. The resulting unit has to provide high reliability in the harsh environment found under the car bonnet.

“EUREKA labelling provided credibility at a national and European level,” says de Bono. “It is also enabling us to get the technology to market faster, speeding European access to cleaner technology and opening up global markets for our equipment.”

Reducing emissions to 130 g/km adds costs for car manufacturers, forcing innovation in car design. This is a clear example of legislation putting the onus on industry to innovate; the goal is naturally to meet legislation without changing the functionality that car drivers have grown to expect from their car today. “Having a consortium in Europe enables us to develop the technology in Europe first before spreading it out globally – giving us a lead in innovative products,” says de Bono.

The Peugeot-Citroen group has already announced that it will adopt the new second-generation technology on over a million cars a year as of 2010/11. “We are also talking to all the other carmakers in Europe – and there is interest in Asia, particularly from China, which is keen to reduce energy needs, and in the USA to meet the 35 miles/gallon limit they committed to in 2007,” he adds.

Shar McKenzie | alfa
Further information:

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>