Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marines to Use Autonomous Vehicles Built by Virginia Tech Students

24.06.2010
Four unmanned autonomous vehicles designed and built by a team of engineering students at Virginia Tech using the TORC Robotic Building Blocks product line, are headed to Hawaii to participate in the 2010 Rim of the Pacific (RIMPAC) war games in July.

Fourteen nations, 34 ships, five submarines, more than 100 aircraft, and 20,000 personnel will participate in the biennial RIMPAC exercise June 23 through Aug. 1.

The Marine Corps Warfighting Laboratory worked closely with Virginia Tech and TORC in the creation of the four Ground Unmanned Support Surrogates (GUSS) that will be used for their ability to support a platoon of U.S. Marines.

The unmanned vehicles can carry up to 1800 pounds and can move at the speed of a troop on foot, or about five miles per hour. The vehicles are designed to re-supply troops, to reduce the actual loads manually carried by Marines, and to provide an immediate means for the evacuation of any casualties in combat. A Marine unit will operate GUSS during the Naval Laboratory’s enhanced company operations experimentation that coincides with RIMPAC.

Virginia Tech and TORC, a company founded by alumni of the university’s robotics program, http://www.torctech.com/ share a very successful track record on their collaborations. Together, they developed autonomous vehicles for the Urban Challenge competition sponsored by the Defense Advanced Research Projects Agency (DARPA) in 2006 and in 2007. “The focus of the collaborations is to leverage the research capabilities of the university with the commercialization capabilities of a small business,” said Al Wicks, professor of mechanical engineering (ME) at Virginia Tech and faculty advisor to the team. http://www.me.vt.edu/people/faculty/wicks.html

They took home third place honors in 2007 when their vehicle completed DARPA’s 60-mile course in less than six hours, with no human intervention allowed past the starting line.

The four GUSS vehicles headed to Hawaii are an outgrowth of the technology developed for these DARPA competitions, Wicks said. The sensors have been greatly improved, as well as the perception, planning, and control algorithms to navigate complex environments.

The Urban Challenge featured a cooperative environment with well-defined roads for the competition. When the GUSS vehicles are used by the Marine Corps in Hawaii, they will be “off-road and not in a cooperative environment,” Wicks said. “This is a big step forward in autonomous vehicles.”

Michael Fleming, a Virginia Tech ME graduate and the founder and chief executive officer of TORC, explained the team synergism, saying “I believe our team of government, academia, and industry all working together has provided the Marine Corps with a well-balanced solution.”

As an example, existing algorithms developed by students under previous TORC/Virginia Tech partnerships, were used to create a customized version of the TORC AutonoNav (autonomous navigation system) product to provide the advanced off-road tactical behaviors required to meet the needs of the Marine Corps Warfighting Lab.

The rapid development and experimentation on the GUSS project was made possible through the use of TORC’s Robotic Building Blocks product line, said David Cutter, marketing manager at TORC. This enabled Virginia Tech engineers to leverage off-the-shelf technologies and focus on system integration challenges. The entire development process was completed in less than a year, with the first prototype delivered for testing in six months. The additional three vehicles were produced in the next five months to be shipped to the RIMPAC exercises.

The WaySight, developed by TORC, is the primary operator interface for controlling the GUSS vehicles. Using the one-pound handheld unit, Marines are able to command the unmanned vehicles in several modes depending on the mission. The operator may use the WaySight to rapidly plan a new path, take remote control of the vehicle, or direct it to follow at a safe distance with the autonomous navigation system taking over.

The project is part of a five-year contract between the Naval Surface Warfare Center Dahlgren Division and Virginia Tech that is supporting a number of different projects. The contract is an on-going agreement between Dahlgren and Virginia Tech’s Institute for Critical Technology and Applied Science (ICTAS) to foster innovative research.

The engineering students who participated in the project and their hometowns are: Patrick Currier of Murfreesboro, Tenn., Phillip Tweedy of Lynchburg, Va., James May of Atlanta, Ga., Jason Doyle of Blue Ridge, Va., and Everett Braden of Roanoke, Va.

Further information may be obtained from the following:
Virginia Tech: Al Wicks, awicks@vt.edu
TORC: David Cutter, cutter@torctech.com
Naval Surface Warfare Center Dahlgren Division, Brent Azzarelli, brent.j.azzarelli@navy.mil

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>