Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marines to Use Autonomous Vehicles Built by Virginia Tech Students

24.06.2010
Four unmanned autonomous vehicles designed and built by a team of engineering students at Virginia Tech using the TORC Robotic Building Blocks product line, are headed to Hawaii to participate in the 2010 Rim of the Pacific (RIMPAC) war games in July.

Fourteen nations, 34 ships, five submarines, more than 100 aircraft, and 20,000 personnel will participate in the biennial RIMPAC exercise June 23 through Aug. 1.

The Marine Corps Warfighting Laboratory worked closely with Virginia Tech and TORC in the creation of the four Ground Unmanned Support Surrogates (GUSS) that will be used for their ability to support a platoon of U.S. Marines.

The unmanned vehicles can carry up to 1800 pounds and can move at the speed of a troop on foot, or about five miles per hour. The vehicles are designed to re-supply troops, to reduce the actual loads manually carried by Marines, and to provide an immediate means for the evacuation of any casualties in combat. A Marine unit will operate GUSS during the Naval Laboratory’s enhanced company operations experimentation that coincides with RIMPAC.

Virginia Tech and TORC, a company founded by alumni of the university’s robotics program, http://www.torctech.com/ share a very successful track record on their collaborations. Together, they developed autonomous vehicles for the Urban Challenge competition sponsored by the Defense Advanced Research Projects Agency (DARPA) in 2006 and in 2007. “The focus of the collaborations is to leverage the research capabilities of the university with the commercialization capabilities of a small business,” said Al Wicks, professor of mechanical engineering (ME) at Virginia Tech and faculty advisor to the team. http://www.me.vt.edu/people/faculty/wicks.html

They took home third place honors in 2007 when their vehicle completed DARPA’s 60-mile course in less than six hours, with no human intervention allowed past the starting line.

The four GUSS vehicles headed to Hawaii are an outgrowth of the technology developed for these DARPA competitions, Wicks said. The sensors have been greatly improved, as well as the perception, planning, and control algorithms to navigate complex environments.

The Urban Challenge featured a cooperative environment with well-defined roads for the competition. When the GUSS vehicles are used by the Marine Corps in Hawaii, they will be “off-road and not in a cooperative environment,” Wicks said. “This is a big step forward in autonomous vehicles.”

Michael Fleming, a Virginia Tech ME graduate and the founder and chief executive officer of TORC, explained the team synergism, saying “I believe our team of government, academia, and industry all working together has provided the Marine Corps with a well-balanced solution.”

As an example, existing algorithms developed by students under previous TORC/Virginia Tech partnerships, were used to create a customized version of the TORC AutonoNav (autonomous navigation system) product to provide the advanced off-road tactical behaviors required to meet the needs of the Marine Corps Warfighting Lab.

The rapid development and experimentation on the GUSS project was made possible through the use of TORC’s Robotic Building Blocks product line, said David Cutter, marketing manager at TORC. This enabled Virginia Tech engineers to leverage off-the-shelf technologies and focus on system integration challenges. The entire development process was completed in less than a year, with the first prototype delivered for testing in six months. The additional three vehicles were produced in the next five months to be shipped to the RIMPAC exercises.

The WaySight, developed by TORC, is the primary operator interface for controlling the GUSS vehicles. Using the one-pound handheld unit, Marines are able to command the unmanned vehicles in several modes depending on the mission. The operator may use the WaySight to rapidly plan a new path, take remote control of the vehicle, or direct it to follow at a safe distance with the autonomous navigation system taking over.

The project is part of a five-year contract between the Naval Surface Warfare Center Dahlgren Division and Virginia Tech that is supporting a number of different projects. The contract is an on-going agreement between Dahlgren and Virginia Tech’s Institute for Critical Technology and Applied Science (ICTAS) to foster innovative research.

The engineering students who participated in the project and their hometowns are: Patrick Currier of Murfreesboro, Tenn., Phillip Tweedy of Lynchburg, Va., James May of Atlanta, Ga., Jason Doyle of Blue Ridge, Va., and Everett Braden of Roanoke, Va.

Further information may be obtained from the following:
Virginia Tech: Al Wicks, awicks@vt.edu
TORC: David Cutter, cutter@torctech.com
Naval Surface Warfare Center Dahlgren Division, Brent Azzarelli, brent.j.azzarelli@navy.mil

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Automotive Engineering:

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>