Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making vehicles safer

19.08.2010
A car’s crash components can spell the difference between life and death. Their job is to absorb energy in a collision in order to protect the driver inside. Researchers have now found a way for the automotive industry to mass-produce a particularly safe class of materials known as thermoplastic fi ber composite components.

Vehicles used to be predominantly made of steel. However, this raw material has long faced stiff competition from other materials, and modern cars are now built from a mixture of steels, aluminum and fi ber-reinforced plastics. Highly stressed load-bearing structures and crash components that are designed to buckle on impact help to reinforce the body in order to protect the vehicle‘s occupants in the event of a collision.

Automakers have previously constructed these parts from composites using a thermoset (i.e. infusible) matrix. But this approach has a number of disadvantages: as well as being diffi cult to implement effi ciently in a mass production environment, it can also be potentially hazardous since this material tends to »delaminate« into sharp-edged splinters in a collision. A further problem is the fact that thermosets cannot be recycled. Researchers from the Fraunhofer Institute for Chemical Technology ICT in Pfi nztal have now found a solution to this problem by developing a new class of materials designed for large-scale use in vehicle construction: thermoplastic fi ber composite materials. Once they have reached the end of their useful life, they can be shredded, melted down and reused to produce high-quality parts. And they also perform signifi cantly better in crash tests: thermoplastic components reinforced with textile structures absorb the enormous forces generated in a collision through viscoelastic deformation of the matrix material – without splintering.

Researchers had previously failed to come up with a suitable manufacturing technique for thermoplastic composite structures made from high performance fi bers, but the ICT engineers have now developed a process suitable for mass production which makes it possible to manufacture up to 100,000 parts a year. »Our method offers comparatively short production times,« states Dieter Gittel, a project manager at ICT. »The cycle time to produce thermoplastic components is only around fi ve minutes. Comparable thermoset components frequently require more than 20 minutes.«

The Fraunhofer researchers have named their technique thermoplastic RTM (T-RTM). It is derived from the conventional RTM (Resin Transfer Molding) technique for thermoset fi ber composites. The composite is formed in a single step. »We insert the pre-heated textile structure into a temperature-controlled molding tool so that the fi ber structures are placed in alignment with the anticipated stress. That enables us to produce very lightweight components,« Gittel explains. The preferred types of reinforcement comprise carbon or glass fi bers, and the researchers have also developed highly specialized structures. The next step involves injecting the activated monomer melt into the molding chamber. This contains a catalyst and activator system – chemical substances that are required for polymerization. The ingenious part is that the researchers can select the system and the processing temperature in a way that enables them to set the minimum required processing time.

A demonstration part has confi rmed the benefi ts of this new class of material: the trunk liner for the Porsche »Carrera 4« weighs up to 50 percent less than the original aluminum part. To improve the crash behavior of the vehicle’s overall structure, the ICT engineers also calculated the optimum fi ber placement. Another advantage of the T-RTM process is that the cost of the thermoplastic matrix material and the cost of its processing are up to 50 percent lower than the equivalent costs for thermoset structures. Over the next few years it is anticipated that these kinds of components will start to be used in vehicle and machine construction as well as in the leisure industry. Experts in the fi eld will be exhibiting the trunk liner for the Porsche »Carrera 4« at the COMPOSITES EUROPE fair in Essen from June 14 – 16 (hall 12, stand C33).

Dieter Gittel | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010/08/making-vehicles-safer.jsp

More articles from Automotive Engineering:

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>