Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making vehicles safer

19.08.2010
A car’s crash components can spell the difference between life and death. Their job is to absorb energy in a collision in order to protect the driver inside. Researchers have now found a way for the automotive industry to mass-produce a particularly safe class of materials known as thermoplastic fi ber composite components.

Vehicles used to be predominantly made of steel. However, this raw material has long faced stiff competition from other materials, and modern cars are now built from a mixture of steels, aluminum and fi ber-reinforced plastics. Highly stressed load-bearing structures and crash components that are designed to buckle on impact help to reinforce the body in order to protect the vehicle‘s occupants in the event of a collision.

Automakers have previously constructed these parts from composites using a thermoset (i.e. infusible) matrix. But this approach has a number of disadvantages: as well as being diffi cult to implement effi ciently in a mass production environment, it can also be potentially hazardous since this material tends to »delaminate« into sharp-edged splinters in a collision. A further problem is the fact that thermosets cannot be recycled. Researchers from the Fraunhofer Institute for Chemical Technology ICT in Pfi nztal have now found a solution to this problem by developing a new class of materials designed for large-scale use in vehicle construction: thermoplastic fi ber composite materials. Once they have reached the end of their useful life, they can be shredded, melted down and reused to produce high-quality parts. And they also perform signifi cantly better in crash tests: thermoplastic components reinforced with textile structures absorb the enormous forces generated in a collision through viscoelastic deformation of the matrix material – without splintering.

Researchers had previously failed to come up with a suitable manufacturing technique for thermoplastic composite structures made from high performance fi bers, but the ICT engineers have now developed a process suitable for mass production which makes it possible to manufacture up to 100,000 parts a year. »Our method offers comparatively short production times,« states Dieter Gittel, a project manager at ICT. »The cycle time to produce thermoplastic components is only around fi ve minutes. Comparable thermoset components frequently require more than 20 minutes.«

The Fraunhofer researchers have named their technique thermoplastic RTM (T-RTM). It is derived from the conventional RTM (Resin Transfer Molding) technique for thermoset fi ber composites. The composite is formed in a single step. »We insert the pre-heated textile structure into a temperature-controlled molding tool so that the fi ber structures are placed in alignment with the anticipated stress. That enables us to produce very lightweight components,« Gittel explains. The preferred types of reinforcement comprise carbon or glass fi bers, and the researchers have also developed highly specialized structures. The next step involves injecting the activated monomer melt into the molding chamber. This contains a catalyst and activator system – chemical substances that are required for polymerization. The ingenious part is that the researchers can select the system and the processing temperature in a way that enables them to set the minimum required processing time.

A demonstration part has confi rmed the benefi ts of this new class of material: the trunk liner for the Porsche »Carrera 4« weighs up to 50 percent less than the original aluminum part. To improve the crash behavior of the vehicle’s overall structure, the ICT engineers also calculated the optimum fi ber placement. Another advantage of the T-RTM process is that the cost of the thermoplastic matrix material and the cost of its processing are up to 50 percent lower than the equivalent costs for thermoset structures. Over the next few years it is anticipated that these kinds of components will start to be used in vehicle and machine construction as well as in the leisure industry. Experts in the fi eld will be exhibiting the trunk liner for the Porsche »Carrera 4« at the COMPOSITES EUROPE fair in Essen from June 14 – 16 (hall 12, stand C33).

Dieter Gittel | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010/08/making-vehicles-safer.jsp

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>