Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johnson Controls introduces innovative production process for lightweight door panels made of natural fibers

22.05.2012
Intelligent solutions for interior, seating structure and electronics save weight and increase quality and comfort

Johnson Controls, a global leader in automotive seating, interiors and electronics, is providing a series of innovative door panels, seat structures and instrument clusters for the new BMW 3 Series.


Source: Johnson Controls Automotive Experience

The door panels are made using a combination of natural fibers and plastic that are 20 percent lighter than conventional components. The seat structures for the driver's seat save three to four kilograms depending on the model. The instrument cluster features an Automotive Pixel Link (APIX*) high-speed, point-to-point connection.

"With our innovative products, we are helping BMW make the new 3 Series comfortable and sustainable. We offer high-quality, lighter weight components that reduce fuel consumption," said Beda Bolzenius, president of Johnson Controls Automotive Experience. "We also use renewable and environmentally-sound raw materials in the interior components."

The non-visible door panel elements for the new BMW 3 Series sedan and sports wagon models are largely made of wood fiber. The natural fiber carrier is directly molded with plastic. This innovative production method makes the door panel considerably lighter. A state- of-the-art process known as groove lamination is used to apply the fabric or leather trim on the door panel. This process involves the trim being joined in recesses, eliminating the need for an additional component and further reducing weight.

Four special features characterize the seat structure of the new BMW 3 Series. The use of high-strength steel means it is both stable and lightweight. The low seat back pivot point makes the seat particularly comfortable as it snugly fits the occupant's back. The structure also offers a very finely graduated recliner to ensure the best sitting position. Adjusting motors using four-pole technology, in some cases with rare-earth magnets that have a stronger magnetic field than conventional ferrite magnets, are used in the electrically adjustable seats.

This means they need a smaller installation space and are approximately 200 grams lighter. With up to four motors per seat, this also enables a significant weight reduction. The seat structures are modular in design. They are available with four and eight-way functionality for four and five-door models. There is also a version with an easy-entry function for two-door models.

The basic instrument cluster for the new BMW 3 Series has day and night design and not only offers high-quality analog displays and LED pilot lights but also a 2.7-inch TFT display. The instrument cluster features a bidirectional APIX* high-speed point-to-point connection that facilitates robust image and control data transmission using just one interface. This technology is used in displays and stepper motors on the design circuit board to communicate with the electronics on the PCB (printed circuit board) behind it. Data are transferred at 250 megabits per second, with the APIX technology facilitating up to 3 gigabits per second. Johnson Controls has engineered new solutions with respect to software and electromagnetic compatibility for the use of APIX.

Digital images are available online from www.johnsoncontrols.co.uk/press.

About Johnson Controls

Johnson Controls is a global diversified technology and industrial leader serving customers in more than 150 countries. Our 162,000 employees create quality products, services and solutions to optimize energy and operational efficiencies of buildings; lead-acid automotive batteries and advanced batteries for hybrid and electric vehicles; and interior systems for automobiles. Our commitment to sustainability dates back to our roots in 1885, with the invention of the first electric room thermostat. Through our growth strategies and by increasing market share we are committed to delivering value to shareholders and making our customers successful.

About Johnson Controls Automotive Experience

Johnson Controls is a global leader in automotive seating, overhead systems, door and instrument panels, and interior electronics. We support all major automakers in the differentiation of their vehicles through our products, technologies and advanced manufacturing capabilities. With 240 locations worldwide, we are where our customers need us to be. Consumers have enjoyed the comfort and style of our products, from single components to complete interiors. With our global capability we supply approximately 50 million cars per year.

*APIX is a registered trademark of Inova Semiconductors

Please do not hesitate to contact us if you would like more
information:
Johnson Controls GmbH
Automotive Experience
Industriestraße 20-30
51399 Burscheid Germany
Ulrich Andree
Tel.: +49 2174 65-4343
Fax: +49 2174 65-3219
E-mail: ulrich.andree@jci.com

Ulrich Andree | Johnson Controls
Further information:
http://www.johnsoncontrols.co.uk

Further reports about: APIX AUTOmotive Experience Johnson Controls electric vehicle raw material

More articles from Automotive Engineering:

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht The Future of Mobility: tomorrow’s ways of getting from A to B
07.09.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>