Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industry and research join forces to improve bonding processes in the automotive industry

09.12.2013
In power electronics systems bonded connections create the central electrical connections between adjoining surfaces.

The quality of these bonded connections is one of the main factors that determines the reliability and availability of drive systems in electric vehicles, and hence constitutes a major design challenge for German auto manufacturers aiming to electrify their vehicles.


Laser-guided bonding head
Source: Fraunhofer ILT, Aachen, Germany


Laser-welded copper ribbon bond.
Source: Fraunhofer ILT, Aachen, Germany

Now the partners participating in the RoBE (Robust Bonds in Electric Vehicles) collaborative research project have developed a reliable means of predicting the service life of these bonded connections, and also developed an alternative bonding technique based on laser micro welding that is ready for industrial implementation.

The new technique opens up a wider range of options for the use of wire bonding, especially in applications requiring the joining of copper. Here, modern laser sources with a very high beam quality ensure precise, reproducible weld joints in copper and aluminum. Through the additional use of oscillation welding in combination with adapted design of the wire and ribbon joining zones, the strength of the joint can be improved still further. By comparison with conventional wire bonding, this process offers a higher surface quality and requires less cleaning. Moreover, the process is less dependent on the nature of the underlying surface or the vibration characteristics of the workpiece.

A standard bonding machine was adapted to allow the laser bonding process to be combined with traditional bonding technologies. The new machine now allows the use of a laser in the bonding process. The main applications of this system include ribbon bonding on DCB substrates and copper terminals in the packaging of power electronics assemblies.

Advances in the field of wire bonding technologies that extend the range of design opportunities while at the same time reducing costs are a vital factor in Germany’s future as a leading provider of electromobility solutions. For this reason, since August 1, 2011 the German Federal Ministry of Education and Research (BMBF) has set aside €4.96 million in funding to support this collaborative project as part of its ICT 2020 initiative in the category “Key technologies for electromobility” (STROM).

Contacts

Dr. Alexander Olowinsky
Head of the Micro Joining Group
Phone +49 241 8906-491
alexander.olowinsky@ilt.fraunhofer.de
Dipl.-Ing. Benjamin Mehlmann
Micro Joining Group
Phone +49 241 8906-613
benjamin.mehlmann@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Petra Nolis | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>