Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improvement of the operating range and increasing of the reliability of integrated circuits

09.11.2016

Fast integrated circuits (ICs) are used in many ways in applied electronics. Especially, for hard driven fast or high-power components in the circuit, however, there is often a risk of breakdown, e.g. in oscillator circuits (radar systems, etc.) or “smart power” circuits. At the pn junctions present in all components, the breakdown occurs starting at a critical field strength. The circuit is thus destroyed or becomes unusable. A photodiode-controlled feedback prevents breakdown at pn junctions.
TLB GmbH supports the University of Stuttgart in patenting and marketing its innovation.

Fast integrated circuits (ICs) are used in many ways in applied electronics. Especially, for hard driven fast or high-power components in the circuit, however, there is often a risk of breakdown, e.g. in oscillator circuits (radar systems, etc.) or “smart power” circuits. At the pn junctions present in all components, the breakdown occurs starting at a critical field strength.


The invention is especially advantageous for oscillator circuits that are installed in radar devices for automotive assistance systems, for example.

Foto: TLB GmbH

The circuit is thus destroyed or becomes unusable. To prevent this, Professor Erich Kasper and Michael Morschbach at the Institute for Semiconductor Technology of the University of Stuttgart have developed a new solution. It enables real-time monitoring of the components and prevents breakdown thanks to an integrated control unit.

Currently, the breakdown can only be prevented by an external voltage or current limitation of the whole circuit (IC). In order to consider individual fluctuations of the component and temperature effects, previous solutions have sharply limited the safe operating area (SOA). Thus, in turn, the performance range could not be exploited completely.

The breakdown monitoring of the invention is realized in real time by a photodiode integrated into the semiconductor part (IC). During a breakdown, a pn junction always emits optical radiation. This light emission is detected by the photodiode integrated in the immediate vicinity. Depending on this radiation detected, the voltage and current applied to the pn junction is controlled.

In case of increase of the light emission of the pn junction above a limit value, the current (voltage) is reduced until the optical emissions are below the limit value again. With this control, a complete breakdown is prevented. The working point of a transistor, for example, can thus be placed immediately before breakdown. In an integrated circuit, it is possible to monitor several breakdown-prone pn junctions. The control unit can also be integrated into the semiconductor component (IC).

With this monitoring, it is possible – without the risk of destruction – to expand the operating range and the power yield. In addition to greater reliability of ICs, an expansion of the operating range of the transistors and integrated circuits is thus also possible. The scattering of the component data causes no problems because an upcoming breakdown is detected and prevented and each transistor can be controlled individually at its breakdown limit. This permits optimal exploitation of the circuits, a higher operating temperature range, higher power, higher speed and a longer lifetime.

The invention is especially advantageous for oscillator circuits. Today, such circuits are installed in radar devices for various manufacturers’ automotive assistance systems. For safety reasons, very great reliability is indispensable here. Reliability is also a crucial topic for applications in aviation and space technology, and for "smart power” in electromobility applications.

The patents for the invention have already been granted in Germany (DE 102007002820B3), the USA (US8519732B2) and in France and Great Britain (EP Patent). Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovation. TLB has been commissioned by the university with the global business implementation of this pioneering technology and offers companies possibilities to license or purchase the patents.

For more detailed information, please contact Innovation Manager Dipl.-Ing. Emmerich Somlo (esomlo@tlb.de).

Weitere Informationen:

http://www.technologie-lizenz-buero.com/

Annette Siller | idw - Informationsdienst Wissenschaft

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>