Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved Performance thanks to Reduced Weight

24.07.2017

Scientists of the Federal Cluster of Excellence MERGE in Chemnitz develop a Lightweight Wheel for more Safety and Comfort on the Road

Researchers of the Federal Cluster of Excellence “MERGE: Technologies for Multifunctional Lightweight Structures” at Chemnitz University of Technology and their partners from the Fraunhofer Institute for Machine Tools and Forming Technology (IWU) have created a successful lightweight design with immense importance for tomorrow’s automotive construction:


Alexander Hackert (on the left) and Tristan Timmel with the novel lightweight wheel.

Photo: Chemnitz University of Technology/Rico Welzel

They were able to reduce the weight of a car wheel by more than 50% through the use of novel materials and structures. Compared to a conventional steel wheel of about 6.8 kg, the novel lightweight wheel weighs only 3.02 kg. The three-part sandwich wheel rim consists of a core of aluminium foam and top layers made of thermoplastic fibre-plastic compounds.

This sandwich design takes advantage of the materials’ respective special properties. Such multi-material-designs are more and more frequently used in the automotive sector. Thus, not only the weight but also the emission of pollutants by motor vehicles can be reduced through combining novel processing technologies with smart material systems.

The combination of thermoplastic fibre-plastic-compounds with metal foams has great lightweight potential, especially for producing on a large scale, as the research fellow at the Cluster of Excellence MERGE Alexander Hackert points out: “Highly porous metal foams such as aluminium foam have excellent mechanical properties at a low density while at the same time they can potentially absorb a lot of energy. That is a contribution to driving comfort, especially when going round a turn in the road. Additionally, they have a distinct damage tolerance.”

The special compound at the core renders the wheel rim extremely stiff and light at the same time. The outside surface of the aluminium foam core is very thin and closed, in order to provide the optimal interface to the carbon fibre-reinforced layers. In addition, there is a buffer layer with glass fibre reinforcing for the harmonisation of the difference in stiffness between the aluminium foam and the carbon fibre-reinforced layers.

“Through an immense increase in pressure when producing the part in a thermic pressing process the thermally induced residual stresses are basically locked in the component. This helps improve its performance, since the high-load areas of the wheel are already under preload”, Hackert explains.

By reducing the unsprung masses the scientists were also able to improve the driving characteristics. The vehicle becomes more agile and changes its behaviour: when the driver hits the brakes, it will stop much faster. “There are special norms and regulations for the application in real traffic, because the safety of all passengers as well as other road users must be guaranteed under all circumstances”, says Hackert.

“Even an unintended crossing onto the curb or going through a pothole must be manageable for such a wheel.” Extensive testing of the sandwich compound as well as complex simulations of the component have proven the construction principle to be adaptable to many other applications. “If we come up with a novel structure for a component we do not just want to make it different per se, but make it better”, as the engineer puts it.

Alexander Hackert’s team has already registered the design of the lightweight wheel as a utility model, and as a patent specification at the German Patent and Trademark Office (DE 20 2014 005 111 U1, DE 10 2014 009 180 A1). The wheel rim’s prototype combines all results from preliminary tests and component simulations and can now be used for the ongoing development up to the point of an actual mass-produced component.

“Our tests of the core compounds have shown the enormous potential of the wheel rim for an automotive application”, Hackert points out. He is more than optimistic that automobile manufacturers who apply alternative concepts such as electric or hydrogen drives will also will make use of the lightweight wheel made in Chemnitz for the development of novel mobility solutions.

The latest publications on sandwich compounds and the lightweight wheel:

Hackert, A.; Müller, S.; Kroll, L.: Leichtbau-Radscheibe aus Carbon-Aluschaum-Sandwich. Lightweight Design, Die Fachzeitschrift für den Leichtbau bewegter Massen 2017, Nr. 10, Issue 1, S. 10-15 DOI: 10.1007/s35725-016-0076-y

C.; Rybandt, S.; Hackert, A.; Drossel, W.: Sandwichbauteile aus Aluminiumschaumkern mit faserverstärkten Kunststoffdecklagen mit komplexer Geometrie - Querlenkerdemonstrator. Tagungsband 8. Landshuter Leichtbau-Colloquium 2017, Hochschule Landshut: Leichtbau grenzenlos, Landshut, 2017, S. 22-30 ISSN: ISBN: 978-3-9818439-0-3, ISBN: 3-9818439-0-8

Dipl.-Ing. Mario Steinebach | Technische Universität Chemnitz
Further information:
http://www.tu-chemnitz.de/

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>