Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid foams and lightweight constructions

27.01.2009
A special process will make it possible to improve the mechanical, thermal and acoustic properties of foams in the future. This will be of particular benefit to lightweight construction.

Mother nature is a smart builder. The cell structure of bones and honeycombs, for example, is particularly resilient and gets by with extremely little material. The process by which these lightweight structures form is just as suitable for foaming metals, plastics and ceramics.

These foams have specific properties depending on the material they are made of. While plastic foams are light and flexible but cannot withstand high temperatures, metal foams are extremely tough but are heavy and not very flexible. Ceramic foams are quite stiff and can resist even very high temperatures, but are rather difficult to shape.

In the automotive and aerospace industries, it would be more effective and resource-saving to combine the flexibility of plastic with the resilience of metal to create a material with entirely new properties. This is exactly what the Fraunhofer researchers are striving to do by developing hybrid foams. What is special about these materials is that they have the potential to acquire completely new characteristics, while at the same time eliminating the specific weaknesses of each constituent, such as the heavy weight of the metal foam.

The efficiency of the novel materials is to be demonstrated in three test applications: One is to increase the sound insulation in a combustion engine, another is to improve the energy absorption in a crash box, and the third is to manufacture lightweight, high-strength components. A research group comprising the Fraunhofer Institutes for Chemical Technology ICT, Manufacturing Engineering and Applied Materials Research IFAM, Ceramic Technologies and Systems IKTS, Silicate Research ISC and Mechanics of Materials IWM has taken up the challenge of developing the multifunctional hybrid foams.

Frank Henning | alfa
Further information:
http://www.fraunhofer.de/EN/press/pi/2009/01/ResearchNews012009Topic7.jsp

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>