Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid foams and lightweight constructions

27.01.2009
A special process will make it possible to improve the mechanical, thermal and acoustic properties of foams in the future. This will be of particular benefit to lightweight construction.

Mother nature is a smart builder. The cell structure of bones and honeycombs, for example, is particularly resilient and gets by with extremely little material. The process by which these lightweight structures form is just as suitable for foaming metals, plastics and ceramics.

These foams have specific properties depending on the material they are made of. While plastic foams are light and flexible but cannot withstand high temperatures, metal foams are extremely tough but are heavy and not very flexible. Ceramic foams are quite stiff and can resist even very high temperatures, but are rather difficult to shape.

In the automotive and aerospace industries, it would be more effective and resource-saving to combine the flexibility of plastic with the resilience of metal to create a material with entirely new properties. This is exactly what the Fraunhofer researchers are striving to do by developing hybrid foams. What is special about these materials is that they have the potential to acquire completely new characteristics, while at the same time eliminating the specific weaknesses of each constituent, such as the heavy weight of the metal foam.

The efficiency of the novel materials is to be demonstrated in three test applications: One is to increase the sound insulation in a combustion engine, another is to improve the energy absorption in a crash box, and the third is to manufacture lightweight, high-strength components. A research group comprising the Fraunhofer Institutes for Chemical Technology ICT, Manufacturing Engineering and Applied Materials Research IFAM, Ceramic Technologies and Systems IKTS, Silicate Research ISC and Mechanics of Materials IWM has taken up the challenge of developing the multifunctional hybrid foams.

Frank Henning | alfa
Further information:
http://www.fraunhofer.de/EN/press/pi/2009/01/ResearchNews012009Topic7.jsp

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>