Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High strength cellular aluminium foam for the automotive industry

11.06.2014

Aluminum foam is used for applications that requires high level of energy and sound absorption characteristics. UiTM researchers have developed an innovative process to make high strength cellular aluminium foam with help from some salt.

Aluminium foam exhibits unique properties when compared to its dense form, particularly its lightweight characteristics. Generally, the foam can be divided into two categories; closed cell and open cell, both have different characteristics and applications.

The features of the closed cell are, the pores structure is isolated and they are not connected to each other. This type of aluminium foam is suitable for application that requires high level of energy and sound absorption characteristics. It has been used widely in many structural parts, particularly in areas exposed to high damping capacity, for example in the automotive front bumper component.

Meanwhile, the open cell, owing to greater level of connectivity of the pores, the structure has been accepted and used in thermal management applications. One such promising application is as a heat exchanger, particularly as a cooling medium to transfer heat, due to the development of its porous structure, which provides greater surface area, thus, enabling improved heat transfer efficiency. Producing a combined structure of open and closed cell in one volume component appears to be a difficult process due to the different processing techniques involved and their individual limitations.

Therefore, in this study, an innovative processing route for high strength cellular aluminium foam (CAF) by integrating porous and dense structures is presented. The CAF is well known as a light-weight product exhibiting high level of inter-connected porosity which is very useful as a thermal management application, particularly as a heat transfer or cooling medium. However, the level of strength for the CAF is not really promising when it is subjected to high impact; thus, limit its potential application, particularly in the automotive industry.

Subsequently, an alternative route by integrating dense and porous structure has been investigated. The solid aluminium at the centre acts as a pillar providing excellent strength for the surrounding foam structure. The product has demonstrated functionally graded properties which is possible for applications that require both properties of heat transfer and high strength.

The product was fabricated using infiltration of NaCl space holder combined with central solid aluminium foam. It is well known that NaCl has a greater melting point than that of aluminium. Therefore, when aluminium melts, the liquid fills the interstitial spaces between the NaCl grain. Prior to melting, the NaCl is sieved according to the desired porous structure.

The materials (NaCl, central aluminium core and dense Aluminium ingot) are placed in the cylindrical steel mould and heated at temperature range between 670 and 700oC. The NaCl is placed at the bottom mould with aluminium central pillar and bulk Aluminium placed at the top of NaCl so that after the aluminium turns into liquid, it penetrates along the interstitial spaces between NaCl. Upon solidification, the part is removed from the mould and further machining is carried out to remove surface roughness caused by the solidification process. The part is then leached in an ultrasonic water bath in order to remove the NaCl completely.

The final product is the cellular aluminium foam exhibiting excellent interconnected pores structure with dense central pillar. The central solid pillar provides extra strength for the surrounded foam structure. The foams structure produced was examined for its density, porosity and strength by compression test. Thermal conductivity was also carried out to investigate the effect of space holder size and the NaCl fractions on the final properties.

MUHAMMAD HUSSAIN BIN ISMAIL
Faculty of Mechanical Engineering
University Teknologi MARA, Malaysia
hussain305@salam.uitm.edu.my 

Funding information

University Teknologi MARA

Darmarajah Nadarajah | Research SEA News
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

Further reports about: UiTM characteristics dense foam heat pores porous processing structure techniques

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Custom-tailored strategy against glioblastomas

26.09.2016 | Health and Medicine

Cooling buildings with solar heat

26.09.2016 | Power and Electrical Engineering

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>