Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High strength cellular aluminium foam for the automotive industry

11.06.2014

Aluminum foam is used for applications that requires high level of energy and sound absorption characteristics. UiTM researchers have developed an innovative process to make high strength cellular aluminium foam with help from some salt.

Aluminium foam exhibits unique properties when compared to its dense form, particularly its lightweight characteristics. Generally, the foam can be divided into two categories; closed cell and open cell, both have different characteristics and applications.

The features of the closed cell are, the pores structure is isolated and they are not connected to each other. This type of aluminium foam is suitable for application that requires high level of energy and sound absorption characteristics. It has been used widely in many structural parts, particularly in areas exposed to high damping capacity, for example in the automotive front bumper component.

Meanwhile, the open cell, owing to greater level of connectivity of the pores, the structure has been accepted and used in thermal management applications. One such promising application is as a heat exchanger, particularly as a cooling medium to transfer heat, due to the development of its porous structure, which provides greater surface area, thus, enabling improved heat transfer efficiency. Producing a combined structure of open and closed cell in one volume component appears to be a difficult process due to the different processing techniques involved and their individual limitations.

Therefore, in this study, an innovative processing route for high strength cellular aluminium foam (CAF) by integrating porous and dense structures is presented. The CAF is well known as a light-weight product exhibiting high level of inter-connected porosity which is very useful as a thermal management application, particularly as a heat transfer or cooling medium. However, the level of strength for the CAF is not really promising when it is subjected to high impact; thus, limit its potential application, particularly in the automotive industry.

Subsequently, an alternative route by integrating dense and porous structure has been investigated. The solid aluminium at the centre acts as a pillar providing excellent strength for the surrounding foam structure. The product has demonstrated functionally graded properties which is possible for applications that require both properties of heat transfer and high strength.

The product was fabricated using infiltration of NaCl space holder combined with central solid aluminium foam. It is well known that NaCl has a greater melting point than that of aluminium. Therefore, when aluminium melts, the liquid fills the interstitial spaces between the NaCl grain. Prior to melting, the NaCl is sieved according to the desired porous structure.

The materials (NaCl, central aluminium core and dense Aluminium ingot) are placed in the cylindrical steel mould and heated at temperature range between 670 and 700oC. The NaCl is placed at the bottom mould with aluminium central pillar and bulk Aluminium placed at the top of NaCl so that after the aluminium turns into liquid, it penetrates along the interstitial spaces between NaCl. Upon solidification, the part is removed from the mould and further machining is carried out to remove surface roughness caused by the solidification process. The part is then leached in an ultrasonic water bath in order to remove the NaCl completely.

The final product is the cellular aluminium foam exhibiting excellent interconnected pores structure with dense central pillar. The central solid pillar provides extra strength for the surrounded foam structure. The foams structure produced was examined for its density, porosity and strength by compression test. Thermal conductivity was also carried out to investigate the effect of space holder size and the NaCl fractions on the final properties.

MUHAMMAD HUSSAIN BIN ISMAIL
Faculty of Mechanical Engineering
University Teknologi MARA, Malaysia
hussain305@salam.uitm.edu.my 

Funding information

University Teknologi MARA

Darmarajah Nadarajah | Research SEA News
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

Further reports about: UiTM characteristics dense foam heat pores porous processing structure techniques

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>