Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High strength cellular aluminium foam for the automotive industry

11.06.2014

Aluminum foam is used for applications that requires high level of energy and sound absorption characteristics. UiTM researchers have developed an innovative process to make high strength cellular aluminium foam with help from some salt.

Aluminium foam exhibits unique properties when compared to its dense form, particularly its lightweight characteristics. Generally, the foam can be divided into two categories; closed cell and open cell, both have different characteristics and applications.

The features of the closed cell are, the pores structure is isolated and they are not connected to each other. This type of aluminium foam is suitable for application that requires high level of energy and sound absorption characteristics. It has been used widely in many structural parts, particularly in areas exposed to high damping capacity, for example in the automotive front bumper component.

Meanwhile, the open cell, owing to greater level of connectivity of the pores, the structure has been accepted and used in thermal management applications. One such promising application is as a heat exchanger, particularly as a cooling medium to transfer heat, due to the development of its porous structure, which provides greater surface area, thus, enabling improved heat transfer efficiency. Producing a combined structure of open and closed cell in one volume component appears to be a difficult process due to the different processing techniques involved and their individual limitations.

Therefore, in this study, an innovative processing route for high strength cellular aluminium foam (CAF) by integrating porous and dense structures is presented. The CAF is well known as a light-weight product exhibiting high level of inter-connected porosity which is very useful as a thermal management application, particularly as a heat transfer or cooling medium. However, the level of strength for the CAF is not really promising when it is subjected to high impact; thus, limit its potential application, particularly in the automotive industry.

Subsequently, an alternative route by integrating dense and porous structure has been investigated. The solid aluminium at the centre acts as a pillar providing excellent strength for the surrounding foam structure. The product has demonstrated functionally graded properties which is possible for applications that require both properties of heat transfer and high strength.

The product was fabricated using infiltration of NaCl space holder combined with central solid aluminium foam. It is well known that NaCl has a greater melting point than that of aluminium. Therefore, when aluminium melts, the liquid fills the interstitial spaces between the NaCl grain. Prior to melting, the NaCl is sieved according to the desired porous structure.

The materials (NaCl, central aluminium core and dense Aluminium ingot) are placed in the cylindrical steel mould and heated at temperature range between 670 and 700oC. The NaCl is placed at the bottom mould with aluminium central pillar and bulk Aluminium placed at the top of NaCl so that after the aluminium turns into liquid, it penetrates along the interstitial spaces between NaCl. Upon solidification, the part is removed from the mould and further machining is carried out to remove surface roughness caused by the solidification process. The part is then leached in an ultrasonic water bath in order to remove the NaCl completely.

The final product is the cellular aluminium foam exhibiting excellent interconnected pores structure with dense central pillar. The central solid pillar provides extra strength for the surrounded foam structure. The foams structure produced was examined for its density, porosity and strength by compression test. Thermal conductivity was also carried out to investigate the effect of space holder size and the NaCl fractions on the final properties.

MUHAMMAD HUSSAIN BIN ISMAIL
Faculty of Mechanical Engineering
University Teknologi MARA, Malaysia
hussain305@salam.uitm.edu.my 

Funding information

University Teknologi MARA

Darmarajah Nadarajah | Research SEA News
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

Further reports about: UiTM characteristics dense foam heat pores porous processing structure techniques

More articles from Automotive Engineering:

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Pioneering joining technology for high performance hybrid automotive parts
18.12.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>