Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electromobility: New Components Going for a Test Run

18.10.2011
The future belongs to electrical cars – that’s what most experts think.

Unfortunately, there are still a lot of problems that have not been solved. This is the reason why researchers at 33 Fraunhofer institutes put their heads together in the Fraunhofer System Research for Electromobility project to move electromobility one big step ahead. This two-year project was completed on July 30, 2011, and the demonstrator vehicles they came up with were showcased at the final event in Papenburg, Germany, on September 2, 2011, on the ATP test track.


The FreccO (Fraunhofer electric concept car, generation 0) serves as the technology base for tests on the models in order to coordinate the separate components with one another (© Ingo Daute/Fraunhofer)

In the future, it will be whisper-quiet on road because in the long run electric cars will replace the internal combustion engine. But there are still some unanswered questions. For instance, how do you store the electricity in cars? Or what power networks do you need? And anyway, how do you pay for charging your battery? Two years ago, researchers from 33 Fraunhofer institutes joined forces to answer these and many other questions while coordinating the various components of electrical cars. The idea behind this partnership is supporting the German car and supply industry to make sure they stay on top in electromobility for a long time to come. This is why this project was funded by the German Federal Ministry of Education and Research with 34.5 million euros from its Economic Policy Program II.

Professor Ulrich Buller is the Senior Vice President for Research at Fraunhofer Gesellshaft. He describes the idea behind system research: “We take care of overarching aspects starting with generating the energy and going all the way down to business models.” Professor Holger Hanselka is the director of the Fraunhofer Institute for Structural Durability and System Reliability LBF and the project coordinator. He goes into detail: “We have defined a total of five concentrations: issues of decentralized power generation and power transport to vehicles, energy storage, vehicle engineering and system integration. We’re talking about new value-added chains and getting people to accept the idea of electromobility. We added the concentration of ‘function, reliability, testing and launch’ in 2011.”

After the project was over, the institutes involved unveiled their findings on the ATP test track in Papenburg, Germany, on September 2; researchers invited visitors for a test ride in the experimental vehicles. This is where the first and second generation of Fraunhofer’s Frecc0 developmental vehicles are ready for testing. Both of these electrical cars are based upon Artega GT, a two-seater sports car. Franz-Josef Wöstmann, division director at the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Bremen, Germany, says: “We installed commercially available components into the Frecc0 1.0 and concentrated on streamlining the way these components interact.” This Fraunhofer Institute took on project management for building the Frecc0 demonstrator vehicle.

Frecc0 2.0 contains components recently developed by these scientists. A case in point are wheel hub motors that the researchers from IFAM conceived in teamwork with their colleagues at the Fraunhofer Institute for Integrated Systems and Device Technology IISB, the Fraunhofer Institute for Mechanics of Materials IWM and the Fraunhofer Institute for Structural Durability and System Reliability LBF. Franz-Josef Wöstmann stresses, “We engineered the motor from the onset for the European market and we selected a diameter to make sure it has room in a 15-inch wheel rim. In turn, the engine is adapted to the available construction space. This is why we had to come up with completely new components with maximum power density – starting with the power electronics through setting up the cooling right down to the design.” Totally new vehicle designs are possible since the researchers moved the entire drive train – the entire engine including the center tunnel, cardan shaft and transmission – out of the car and into the wheel hubs or even eliminated them altogether. For instance, the passenger compartment on a vehicle that is about the same size as a VW Passat would be as big as an S-Class Mercedes. Another advantage is the fact that every wheel gets the performance it needs. This means greater safety for each passenger because each individual wheel cannot only be separately braked, but also accelerated. That gives the wheel hub motor torque vectoring, an advancement over today’s ESP. Franz-Josef Wöstmann adds that “all components in the wheel hub motor are designed for series production.”

Another innovation is the cast coil. Now, Fraunhofer researchers can cast coils with a new technique instead of winding them as previously. This has the benefit that the installation space in the drive motor is used more efficiently. In contrast to the lot fill factor of approximately 55 percent normal today, experts achieve lot fill factors in excess of 90 percent. This permits higher power density and greater efficiency with an equally large coil installation space. Much smaller coils can be used due to the higher lot fill factors, or aluminum can be used with the same dimensions if engine output is supposed to stay the same. Felix Horch from the Fraunhofer Institute for Manufacturing Technology and Advanced Materials explains: “Thanks to this new production technology, we can substantially reduce the installation space, weight and price for coils.”

Incidentally, Fraunhofer scientists were not the only ones to use the Frecc0 as a test platform. In the future, automobile manufacturers and suppliers will be able to use Frecc0 together with the Fraunhofer Institute for Manufacturing Technology and Advanced Materials for testing or advancing new components.

Franz-Josef Wöstmann | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010-2011/21/electromobility-testrun-newcomponents.jsp

More articles from Automotive Engineering:

nachricht Self-driving cars for country roads
07.05.2018 | Massachusetts Institute of Technology, CSAIL

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>