Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric cars for everyday use

12.12.2008
Scientists at the University of Münster are involved in a new nationwide project in Germany to develop innovative electric cars. Münster is the biggest university taking part in this "Electromobility Fleet Test", the aim of which is to further develop plug-in hybrid technology.

The project was initiated by the German government and Volkswagen and is being carried out jointly with partners from industry and universities. It is being funded to the tune of 32.5 million euros over four years. Scientists from the Department of Chemistry and Pharmacy at Münster University are getting project funding amounting to 3.3 million, making them the biggest university partner in the electromobility project.

The aim is to further develop plug-in hybrid technology. Vehicles equipped with this technology have not only a conventional combustion engine but also a battery which can be recharged from a socket. The function of the battery is on the one hand to support the combustion engine during acceleration - which enhances driving comfort - and on the other hand to reclaim braking energy, which makes it more energy- and climate-friendly. Overall, the objective is to significantly reduce fuel consumption. The plug-in hybrid technology also allows purely electric driving - especially on short stretches, such as in towns and cities.

Developing batteries meant for hybrid vehicles with combustion engine and electromotor to make them suitable for purely electric vehicles is difficult. The range attainable by conventional batteries is too short and they are too expensive. However, in the long-term a purely electric vehicle which could do without gasoline or diesel would be highly attractive from the point of view of energy and climate - thus making it desirable for researchers, too. "We want to develop lithium-ion batteries for use in cars," says Prof. Winter from the Institute of Physical Chemistry at Münster University. "These batteries have three times as much energy potential as conventional car batteries. That would be sufficient, at least for commuters - especially if the car can be recharged from a socket while it is parked."

Also involved in the project at Münster University are Prof. Hellmut Eckert from the Institute of Physical Chemistry as well as Prof. Uwe Karst, Prof. Rainer Pöttgen and Prof. Hans-Dieter Wiemhöfer from the Institute of Anorganic and Analytical Chemistry. They are all testing the range and resilience of individual cells of lithium-ion batteries. In a Large Cell Test Facility researchers are simulating the effects of drives on the battery components. After such "drives" the components are examined for ageing effects. "We may then be able to propose measures which can counteract premature battery ageing and thereby increase service life - which would mean savings for all of us," says Prof. Winter.

Prof. Winter is an expert on lithium-ion technology at Münster University and has had an endowed professorship for Applied Material Sciences for Energy Storage and Energy Conversion since January 2008, provided by Chemetall, Evonik Industries and Volkswagen. The professorship has been created for a five-year period with funding amounting to a total of 2.5 million euros.

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/Chemie.pc/winter/

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>