Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric cars for everyday use

12.12.2008
Scientists at the University of Münster are involved in a new nationwide project in Germany to develop innovative electric cars. Münster is the biggest university taking part in this "Electromobility Fleet Test", the aim of which is to further develop plug-in hybrid technology.

The project was initiated by the German government and Volkswagen and is being carried out jointly with partners from industry and universities. It is being funded to the tune of 32.5 million euros over four years. Scientists from the Department of Chemistry and Pharmacy at Münster University are getting project funding amounting to 3.3 million, making them the biggest university partner in the electromobility project.

The aim is to further develop plug-in hybrid technology. Vehicles equipped with this technology have not only a conventional combustion engine but also a battery which can be recharged from a socket. The function of the battery is on the one hand to support the combustion engine during acceleration - which enhances driving comfort - and on the other hand to reclaim braking energy, which makes it more energy- and climate-friendly. Overall, the objective is to significantly reduce fuel consumption. The plug-in hybrid technology also allows purely electric driving - especially on short stretches, such as in towns and cities.

Developing batteries meant for hybrid vehicles with combustion engine and electromotor to make them suitable for purely electric vehicles is difficult. The range attainable by conventional batteries is too short and they are too expensive. However, in the long-term a purely electric vehicle which could do without gasoline or diesel would be highly attractive from the point of view of energy and climate - thus making it desirable for researchers, too. "We want to develop lithium-ion batteries for use in cars," says Prof. Winter from the Institute of Physical Chemistry at Münster University. "These batteries have three times as much energy potential as conventional car batteries. That would be sufficient, at least for commuters - especially if the car can be recharged from a socket while it is parked."

Also involved in the project at Münster University are Prof. Hellmut Eckert from the Institute of Physical Chemistry as well as Prof. Uwe Karst, Prof. Rainer Pöttgen and Prof. Hans-Dieter Wiemhöfer from the Institute of Anorganic and Analytical Chemistry. They are all testing the range and resilience of individual cells of lithium-ion batteries. In a Large Cell Test Facility researchers are simulating the effects of drives on the battery components. After such "drives" the components are examined for ageing effects. "We may then be able to propose measures which can counteract premature battery ageing and thereby increase service life - which would mean savings for all of us," says Prof. Winter.

Prof. Winter is an expert on lithium-ion technology at Münster University and has had an endowed professorship for Applied Material Sciences for Energy Storage and Energy Conversion since January 2008, provided by Chemetall, Evonik Industries and Volkswagen. The professorship has been created for a five-year period with funding amounting to a total of 2.5 million euros.

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/Chemie.pc/winter/

More articles from Automotive Engineering:

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>