Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric cars for everyday use

12.12.2008
Scientists at the University of Münster are involved in a new nationwide project in Germany to develop innovative electric cars. Münster is the biggest university taking part in this "Electromobility Fleet Test", the aim of which is to further develop plug-in hybrid technology.

The project was initiated by the German government and Volkswagen and is being carried out jointly with partners from industry and universities. It is being funded to the tune of 32.5 million euros over four years. Scientists from the Department of Chemistry and Pharmacy at Münster University are getting project funding amounting to 3.3 million, making them the biggest university partner in the electromobility project.

The aim is to further develop plug-in hybrid technology. Vehicles equipped with this technology have not only a conventional combustion engine but also a battery which can be recharged from a socket. The function of the battery is on the one hand to support the combustion engine during acceleration - which enhances driving comfort - and on the other hand to reclaim braking energy, which makes it more energy- and climate-friendly. Overall, the objective is to significantly reduce fuel consumption. The plug-in hybrid technology also allows purely electric driving - especially on short stretches, such as in towns and cities.

Developing batteries meant for hybrid vehicles with combustion engine and electromotor to make them suitable for purely electric vehicles is difficult. The range attainable by conventional batteries is too short and they are too expensive. However, in the long-term a purely electric vehicle which could do without gasoline or diesel would be highly attractive from the point of view of energy and climate - thus making it desirable for researchers, too. "We want to develop lithium-ion batteries for use in cars," says Prof. Winter from the Institute of Physical Chemistry at Münster University. "These batteries have three times as much energy potential as conventional car batteries. That would be sufficient, at least for commuters - especially if the car can be recharged from a socket while it is parked."

Also involved in the project at Münster University are Prof. Hellmut Eckert from the Institute of Physical Chemistry as well as Prof. Uwe Karst, Prof. Rainer Pöttgen and Prof. Hans-Dieter Wiemhöfer from the Institute of Anorganic and Analytical Chemistry. They are all testing the range and resilience of individual cells of lithium-ion batteries. In a Large Cell Test Facility researchers are simulating the effects of drives on the battery components. After such "drives" the components are examined for ageing effects. "We may then be able to propose measures which can counteract premature battery ageing and thereby increase service life - which would mean savings for all of us," says Prof. Winter.

Prof. Winter is an expert on lithium-ion technology at Münster University and has had an endowed professorship for Applied Material Sciences for Energy Storage and Energy Conversion since January 2008, provided by Chemetall, Evonik Industries and Volkswagen. The professorship has been created for a five-year period with funding amounting to a total of 2.5 million euros.

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/Chemie.pc/winter/

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>