Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Demonstrating a driverless future

25.06.2014

Carnegie Mellon researchers bring NSF-funded autonomous vehicle to D.C. to show promise of driverless cars

In the coming decades, we will likely commute to work and explore the countryside in autonomous, or driverless, cars capable of communicating with the roads they are traveling on. A convergence of technological innovations in embedded sensors, computer vision, artificial intelligence, control and automation, and computer processing power is making this feat a reality.


Researchers from Carnegie Mellon University demonstrate the autonomous vehicle they developed with NSF support at an event in September 2013. Their driverless car arrived in Washington, D.C., in June 2014 for a demonstration at the Capitol.

Credit: Carnegie Mellon University

This week, researchers from Carnegie Mellon University (CMU) will mark a significant milestone, demonstrating one of the most advanced autonomous vehicles ever designed, capable of navigating on urban roads and highways without human intervention. The car was brought to Washington, D.C., at the request of Congressman Bill Shuster of Pennsylvania, who participated in a 33-mile drive in the autonomous vehicle between a Pittsburgh suburb and the city's airport last September.

Developed with support from the National Science Foundation (NSF), the U.S. Department of Transportation, DARPA and General Motors, the car is the result of more than a decade of research and development by scientists and engineers at CMU and elsewhere. Their work has advanced the underlying technologies--sensors, software, wireless communications and network integration--required to make sure a vehicle on the road is as safe--and ultimately safer--without a driver than with one. (In the case of the Washington, D.C., demonstration, an engineer will be on hand to take the wheel if required.)

"This technology has been enabled by remarkable advances in the seamless blend of computation, networking and control into physical objects--a field known as cyber-physical systems," said Cora Marrett, NSF deputy director. "The National Science Foundation has long supported fundamental research that has built a strong foundation to enable cyber-physical systems to become a reality--like Dr. Raj Rajkumar's autonomous car."

Raj Rajkumar, a professor of electrical and computer engineering and robotics at CMU, is a leader not just in autonomous vehicles, but in the broader field of cyber-physical systems, or CPS. Such systems are already in use in sectors such as agriculture, energy, healthcare and advanced manufacturing, and they are poised to make an impact in transportation as well.

"Federal funding has been critical to our work in dealing with the uncertainties of real-world operating conditions, making efficient real-time usage of on-board computers, enabling vehicular communications and ensuring safe driving behaviors," Rajkumar said.

In 2007, Carnegie Mellon's then state-of-the-art driverless car, BOSS, took home the $2 million grand prize in the DARPA Urban Challenge, which pitted the leading autonomous vehicles in the world against one another in a challenging, urban environment. The new vehicle that Rajkumar is demonstrating in Washington, D.C., is the successor to that vehicle.

Unlike BOSS, which was rigged with visible antennas and large sensors, CMU's new car--a Cadillac SRX--doesn't appear particularly "smart." In fact, it looks much like any other car on the road. However, top-of-the-line radar, cameras, sensors and other technologies are built into the body of the vehicle. The car's computers are tucked away under the floor.

The goal of CMU's researchers is simple but important: To develop a driverless car that can decrease injuries and fatalities on roads. Automotive accidents result in 1.2 million fatalities annually around the world and cost citizens and governments $518 billion. It is estimated that 90 percent of those accidents are caused by human error.

"Because computers don't get distracted, sleepy or angry, they can actually keep us much safer--that is the promise of this technology," Rajkumar said. "Over time, the technology will augment automotive safety significantly."

In addition to controlling the steering, speed and braking, the autonomous systems in the vehicle also detect and avoid obstacles in the road, including pedestrians and bicyclists.

In their demonstration in D.C., cameras in the vehicle will visually detect the status of traffic lights and respond appropriately. In collaboration with the D.C. Department of Transportation, the researchers have even added a technology that allows some of the traffic lights in the Capitol Hill neighborhood of Washington to wirelessly communicate with the car, telling it the status of the lights ahead.

NSF has supported Rajkumar's work on autonomous vehicles since 2005, but it is not the only project of this kind that NSF supports. In addition to CMU's driverless car, NSF supports Sentry, an autonomous underwater vehicle deployed at Woods Hole Oceanographic Institute, and several projects investigating unmanned aerial vehicles (UAVs) including those in use in search and rescue and disaster recovery operations. Moreover, NSF supports numerous projects that advance the fundamental theories and applications that underlie all autonomous vehicles and other cyber-physical systems.

In the last five years, NSF has invested over $200 million in CPS research and education, building a foundation for the smart systems of the future.

-NSF-

Media Contacts
Aaron Dubrow, NSF, 703-292-4489, adubrow@nsf.gov
Byron Spice, Carnegie Mellon University, 412-268-9068, bspice@cs.cmu.edu

Principal Investigators
Raj Rajkumar, Carnegie Mellon University, 412-268-8707, rajkumar@andrew.cmu.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Aaron Dubrow | Eurek Alert!
Further information:
http://nsf.gov/news/news_summ.jsp?cntn_id=131836&org=NSF&from=news

Further reports about: Artificial Intelligence CMU CPS DARPA NSF Transportation grants processing roads wireless communications

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

Scientists identify spark plug that ignites nerve cell demise in ALS

25.08.2016 | Health and Medicine

Secure networks for the Internet of the future

25.08.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>