Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Demonstrating a driverless future


Carnegie Mellon researchers bring NSF-funded autonomous vehicle to D.C. to show promise of driverless cars

In the coming decades, we will likely commute to work and explore the countryside in autonomous, or driverless, cars capable of communicating with the roads they are traveling on. A convergence of technological innovations in embedded sensors, computer vision, artificial intelligence, control and automation, and computer processing power is making this feat a reality.

Researchers from Carnegie Mellon University demonstrate the autonomous vehicle they developed with NSF support at an event in September 2013. Their driverless car arrived in Washington, D.C., in June 2014 for a demonstration at the Capitol.

Credit: Carnegie Mellon University

This week, researchers from Carnegie Mellon University (CMU) will mark a significant milestone, demonstrating one of the most advanced autonomous vehicles ever designed, capable of navigating on urban roads and highways without human intervention. The car was brought to Washington, D.C., at the request of Congressman Bill Shuster of Pennsylvania, who participated in a 33-mile drive in the autonomous vehicle between a Pittsburgh suburb and the city's airport last September.

Developed with support from the National Science Foundation (NSF), the U.S. Department of Transportation, DARPA and General Motors, the car is the result of more than a decade of research and development by scientists and engineers at CMU and elsewhere. Their work has advanced the underlying technologies--sensors, software, wireless communications and network integration--required to make sure a vehicle on the road is as safe--and ultimately safer--without a driver than with one. (In the case of the Washington, D.C., demonstration, an engineer will be on hand to take the wheel if required.)

"This technology has been enabled by remarkable advances in the seamless blend of computation, networking and control into physical objects--a field known as cyber-physical systems," said Cora Marrett, NSF deputy director. "The National Science Foundation has long supported fundamental research that has built a strong foundation to enable cyber-physical systems to become a reality--like Dr. Raj Rajkumar's autonomous car."

Raj Rajkumar, a professor of electrical and computer engineering and robotics at CMU, is a leader not just in autonomous vehicles, but in the broader field of cyber-physical systems, or CPS. Such systems are already in use in sectors such as agriculture, energy, healthcare and advanced manufacturing, and they are poised to make an impact in transportation as well.

"Federal funding has been critical to our work in dealing with the uncertainties of real-world operating conditions, making efficient real-time usage of on-board computers, enabling vehicular communications and ensuring safe driving behaviors," Rajkumar said.

In 2007, Carnegie Mellon's then state-of-the-art driverless car, BOSS, took home the $2 million grand prize in the DARPA Urban Challenge, which pitted the leading autonomous vehicles in the world against one another in a challenging, urban environment. The new vehicle that Rajkumar is demonstrating in Washington, D.C., is the successor to that vehicle.

Unlike BOSS, which was rigged with visible antennas and large sensors, CMU's new car--a Cadillac SRX--doesn't appear particularly "smart." In fact, it looks much like any other car on the road. However, top-of-the-line radar, cameras, sensors and other technologies are built into the body of the vehicle. The car's computers are tucked away under the floor.

The goal of CMU's researchers is simple but important: To develop a driverless car that can decrease injuries and fatalities on roads. Automotive accidents result in 1.2 million fatalities annually around the world and cost citizens and governments $518 billion. It is estimated that 90 percent of those accidents are caused by human error.

"Because computers don't get distracted, sleepy or angry, they can actually keep us much safer--that is the promise of this technology," Rajkumar said. "Over time, the technology will augment automotive safety significantly."

In addition to controlling the steering, speed and braking, the autonomous systems in the vehicle also detect and avoid obstacles in the road, including pedestrians and bicyclists.

In their demonstration in D.C., cameras in the vehicle will visually detect the status of traffic lights and respond appropriately. In collaboration with the D.C. Department of Transportation, the researchers have even added a technology that allows some of the traffic lights in the Capitol Hill neighborhood of Washington to wirelessly communicate with the car, telling it the status of the lights ahead.

NSF has supported Rajkumar's work on autonomous vehicles since 2005, but it is not the only project of this kind that NSF supports. In addition to CMU's driverless car, NSF supports Sentry, an autonomous underwater vehicle deployed at Woods Hole Oceanographic Institute, and several projects investigating unmanned aerial vehicles (UAVs) including those in use in search and rescue and disaster recovery operations. Moreover, NSF supports numerous projects that advance the fundamental theories and applications that underlie all autonomous vehicles and other cyber-physical systems.

In the last five years, NSF has invested over $200 million in CPS research and education, building a foundation for the smart systems of the future.


Media Contacts
Aaron Dubrow, NSF, 703-292-4489,
Byron Spice, Carnegie Mellon University, 412-268-9068,

Principal Investigators
Raj Rajkumar, Carnegie Mellon University, 412-268-8707,

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Aaron Dubrow | Eurek Alert!
Further information:

Further reports about: Artificial Intelligence CMU CPS DARPA NSF Transportation grants processing roads wireless communications

More articles from Automotive Engineering:

nachricht Direct-drive Linear Switched Reluctance Actuator for Automobile Active Suspension Systems
27.10.2015 | The Hong Kong Polytechnic University

nachricht ACOSAR: standardizing merged numerical simulation and real tests
06.10.2015 | Kompetenzzentrum - Das virtuelle Fahrzeug Forschungsgesellschaft mbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>