Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Demonstrating a driverless future

25.06.2014

Carnegie Mellon researchers bring NSF-funded autonomous vehicle to D.C. to show promise of driverless cars

In the coming decades, we will likely commute to work and explore the countryside in autonomous, or driverless, cars capable of communicating with the roads they are traveling on. A convergence of technological innovations in embedded sensors, computer vision, artificial intelligence, control and automation, and computer processing power is making this feat a reality.


Researchers from Carnegie Mellon University demonstrate the autonomous vehicle they developed with NSF support at an event in September 2013. Their driverless car arrived in Washington, D.C., in June 2014 for a demonstration at the Capitol.

Credit: Carnegie Mellon University

This week, researchers from Carnegie Mellon University (CMU) will mark a significant milestone, demonstrating one of the most advanced autonomous vehicles ever designed, capable of navigating on urban roads and highways without human intervention. The car was brought to Washington, D.C., at the request of Congressman Bill Shuster of Pennsylvania, who participated in a 33-mile drive in the autonomous vehicle between a Pittsburgh suburb and the city's airport last September.

Developed with support from the National Science Foundation (NSF), the U.S. Department of Transportation, DARPA and General Motors, the car is the result of more than a decade of research and development by scientists and engineers at CMU and elsewhere. Their work has advanced the underlying technologies--sensors, software, wireless communications and network integration--required to make sure a vehicle on the road is as safe--and ultimately safer--without a driver than with one. (In the case of the Washington, D.C., demonstration, an engineer will be on hand to take the wheel if required.)

"This technology has been enabled by remarkable advances in the seamless blend of computation, networking and control into physical objects--a field known as cyber-physical systems," said Cora Marrett, NSF deputy director. "The National Science Foundation has long supported fundamental research that has built a strong foundation to enable cyber-physical systems to become a reality--like Dr. Raj Rajkumar's autonomous car."

Raj Rajkumar, a professor of electrical and computer engineering and robotics at CMU, is a leader not just in autonomous vehicles, but in the broader field of cyber-physical systems, or CPS. Such systems are already in use in sectors such as agriculture, energy, healthcare and advanced manufacturing, and they are poised to make an impact in transportation as well.

"Federal funding has been critical to our work in dealing with the uncertainties of real-world operating conditions, making efficient real-time usage of on-board computers, enabling vehicular communications and ensuring safe driving behaviors," Rajkumar said.

In 2007, Carnegie Mellon's then state-of-the-art driverless car, BOSS, took home the $2 million grand prize in the DARPA Urban Challenge, which pitted the leading autonomous vehicles in the world against one another in a challenging, urban environment. The new vehicle that Rajkumar is demonstrating in Washington, D.C., is the successor to that vehicle.

Unlike BOSS, which was rigged with visible antennas and large sensors, CMU's new car--a Cadillac SRX--doesn't appear particularly "smart." In fact, it looks much like any other car on the road. However, top-of-the-line radar, cameras, sensors and other technologies are built into the body of the vehicle. The car's computers are tucked away under the floor.

The goal of CMU's researchers is simple but important: To develop a driverless car that can decrease injuries and fatalities on roads. Automotive accidents result in 1.2 million fatalities annually around the world and cost citizens and governments $518 billion. It is estimated that 90 percent of those accidents are caused by human error.

"Because computers don't get distracted, sleepy or angry, they can actually keep us much safer--that is the promise of this technology," Rajkumar said. "Over time, the technology will augment automotive safety significantly."

In addition to controlling the steering, speed and braking, the autonomous systems in the vehicle also detect and avoid obstacles in the road, including pedestrians and bicyclists.

In their demonstration in D.C., cameras in the vehicle will visually detect the status of traffic lights and respond appropriately. In collaboration with the D.C. Department of Transportation, the researchers have even added a technology that allows some of the traffic lights in the Capitol Hill neighborhood of Washington to wirelessly communicate with the car, telling it the status of the lights ahead.

NSF has supported Rajkumar's work on autonomous vehicles since 2005, but it is not the only project of this kind that NSF supports. In addition to CMU's driverless car, NSF supports Sentry, an autonomous underwater vehicle deployed at Woods Hole Oceanographic Institute, and several projects investigating unmanned aerial vehicles (UAVs) including those in use in search and rescue and disaster recovery operations. Moreover, NSF supports numerous projects that advance the fundamental theories and applications that underlie all autonomous vehicles and other cyber-physical systems.

In the last five years, NSF has invested over $200 million in CPS research and education, building a foundation for the smart systems of the future.

-NSF-

Media Contacts
Aaron Dubrow, NSF, 703-292-4489, adubrow@nsf.gov
Byron Spice, Carnegie Mellon University, 412-268-9068, bspice@cs.cmu.edu

Principal Investigators
Raj Rajkumar, Carnegie Mellon University, 412-268-8707, rajkumar@andrew.cmu.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Aaron Dubrow | Eurek Alert!
Further information:
http://nsf.gov/news/news_summ.jsp?cntn_id=131836&org=NSF&from=news

Further reports about: Artificial Intelligence CMU CPS DARPA NSF Transportation grants processing roads wireless communications

More articles from Automotive Engineering:

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Pioneering joining technology for high performance hybrid automotive parts
18.12.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>