Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dashing computer interface to control your car

02.09.2008
European researchers have developed a special dashboard computer to act as a single conduit for all devices emerging in modern cars – GPS, mobile, PDAs, intelligent car technologies. It should mean a better, more relaxed and even safer driving experience.

European research and the automotive industry have joined forces and developed a dashboard interface that can link and control the increasing information and vehicle controls systems currently emerging in the automotive industry.

Right now, dozens of research projects around Europe are working on new technologies to improve automotive safety and to develop intelligent vehicles. But all of these systems must then be added to the dozens of controls and user devices that are already found in a car.

Current in-vehicle systems like open door and seat belt warnings will soon be joined by lane assistance, hazard detection and a host of other information and systems for safe and efficient driving.

Information overload

“There is a real risk the driver will become overwhelmed as the number of in-car systems multiply,” warns Angelos Amditis, dissemination manager of the EU-funded AIDE integrated project. “There are so many potential demands on driver attention from these new systems that they could prove distracting.”

AIDE was set up to tackle this potential problem by developing an Adaptive, Integrated Driver-vehicle interface, or AIDE. The AIDE system provides a clearinghouse for all of the systems operating in a car and to interact with the driver.

This central intelligence can prioritise and emphasise the most important and urgent information based on the driver’s state and current driving conditions, and it can put all other non-essential alerts on hold.

Not nag-ware

AIDE designed the technology to prioritise demands on the driver’s attention depending on driving conditions. If the car is approaching a tricky junction, for example, it can hold all mobile calls and text messages, or suspend non-safety critical information.

The AIDE system can support many different functions, and help to ensure that drivers get the best possible use out of those functions, and that the system is safe and easy to use.

It works by sharing input and output controls among the various subsystems, such as collision avoidance or the mobile phone unit. It then coordinates information centrally, deciding the best course of action for both a given driving situation and the driver’s current state.

If the driver is distracted, for example, the system issues warnings with greater intensity. AIDE also developed the interface so that it could adapt to different types of driver. It is possible to personalise the warning, the media, timing and its intensity according to the driver’s profile, both explicit and implicit preferences, explains Amditis.

AIDE was popular among drivers in field tests, with approximately 50% of the test subjects reporting that they appreciated support from the system. That is a surprising result, really, given that many drivers find in-car systems – like seat belt and door warnings – maddening, and it is very difficult to develop a comfortable interface.

But AIDE succeeded in developing helpful software rather than what could easily be annoying nag-ware.

The positive field response is a tribute to the studies and testing undertaken by the AIDE project. “We consulted drivers and experts, and a lot of literature about driver response to safety systems, using a user-centred design approach,” notes Amditis.

HMI cookbook

AIDE also looked at quantitative models and simulation, which may ultimately provide a cost-effective system for testing. The perfect quantitative model remains elusive for now, but AIDE did develop a ‘cookbook’ for Human-Machine Interface (HMI) testing in the automotive industry.

“The project also raised awareness in Europe about the importance of interface issues for road safety, and AIDE has put in-car HMI on the agenda in Europe,” explains Amditis. “Many of our partners will continue AIDE’s work, adapting elements of it to their own cars and trucks, while many of the equipment manufacturers are looking on AIDE-like systems to be implemented in their vehicles.”

“There might be a move towards some standards over time, but in the short term manufacturers will deploy proprietary implementations,” he adds.

Amditis says that the partners hope to continue the work in future projects. “Right now we are putting the finishing touches to our reporting and dissemination work in AIDE, but we will be pursuing new research initiatives after that.”

The AIDE project received funding from the EU’s Sixth Framework Programme for research in ‘information society’ technologies.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89989

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>