Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulates thermal stress

13.08.2008
A new simulation method has made it possible to predict in record time when and where heavily stressed engine components are likely to fail. Car manufacturers can thereby significantly reduce the time for developing new engine components

Exhaust fumes come hissing out of car engines at up to 1050 degrees Celsius – and that’s pretty hot! It exposes the engine components to tremendous stress, for they expand heavily in the heat.

On frosty days, by contrast, the material contracts. There can be no doubt about it: In the long run, such temperature fluctuations put the material under enormous pressure. The manufacturers therefore test particularly stressed components on a test rig while the vehicle is still under development. However, these investigations cost time and money. Component prototypes have to be built and modified in a time-consuming trial-and-error process until the manufacturer has finally produced a reliable component with no weak points.

These investigations have to be repeated for each new material. For certain car manufacturers and suppliers, however, time-consuming component tests are now a thing of the past. A new simulation method developed at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg enables companies to significantly reduce the time taken to develop exhaust manifolds. Exhaust manifolds collect the hot exhaust fumes from the engine and pass them on to the catalytic converter. They are exposed to particularly high temperatures and therefore under very great stress.

The new simulation method enables the researchers to work out the places in which a component will wear out and fail after a certain number of heating and cooling cycles. Thanks to this, the manufacturer can optimize the shape of the workpiece on the computer and greatly reduce the number of real test runs. The Freiburg scientists take a very close look at the material.

Starting by testing the material in the laboratory, they heat, squeeze and pull the metal, repeatedly checking under the microscope when and where tiny cracks begin to form. The researchers then feed these insights into their simulation software. From now on, car manufacturers can use it to calculate how the material will behave and when it will fail, for each new component shape. “It goes without saying that our simulation models can also be applied to all kinds of materials and used in other sectors of industry,” says IWM project manager Dr. Thomas Seifert. At present, Seifert and his colleagues are engaged in a joint project with RWE Power and Thyssen-Krupp to investigate heat-resistant nickel alloys for a new generation of power stations.

These will be built to operate at particularly high temperatures and achieve a higher degree of efficiency than today’s facilities.

Dr.-Ing. Thomas Peter Seifert | alfa
Further information:
http://www.fraunhofer.de/
http://www.fraunhofer.de/EN/press/pi/2008/08/ResearchNews082008Topic4.jsp
http://www.fraunhofer.de/EN/bigimg/2008/rn08fo4g.jsp

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>