Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulates thermal stress

13.08.2008
A new simulation method has made it possible to predict in record time when and where heavily stressed engine components are likely to fail. Car manufacturers can thereby significantly reduce the time for developing new engine components

Exhaust fumes come hissing out of car engines at up to 1050 degrees Celsius – and that’s pretty hot! It exposes the engine components to tremendous stress, for they expand heavily in the heat.

On frosty days, by contrast, the material contracts. There can be no doubt about it: In the long run, such temperature fluctuations put the material under enormous pressure. The manufacturers therefore test particularly stressed components on a test rig while the vehicle is still under development. However, these investigations cost time and money. Component prototypes have to be built and modified in a time-consuming trial-and-error process until the manufacturer has finally produced a reliable component with no weak points.

These investigations have to be repeated for each new material. For certain car manufacturers and suppliers, however, time-consuming component tests are now a thing of the past. A new simulation method developed at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg enables companies to significantly reduce the time taken to develop exhaust manifolds. Exhaust manifolds collect the hot exhaust fumes from the engine and pass them on to the catalytic converter. They are exposed to particularly high temperatures and therefore under very great stress.

The new simulation method enables the researchers to work out the places in which a component will wear out and fail after a certain number of heating and cooling cycles. Thanks to this, the manufacturer can optimize the shape of the workpiece on the computer and greatly reduce the number of real test runs. The Freiburg scientists take a very close look at the material.

Starting by testing the material in the laboratory, they heat, squeeze and pull the metal, repeatedly checking under the microscope when and where tiny cracks begin to form. The researchers then feed these insights into their simulation software. From now on, car manufacturers can use it to calculate how the material will behave and when it will fail, for each new component shape. “It goes without saying that our simulation models can also be applied to all kinds of materials and used in other sectors of industry,” says IWM project manager Dr. Thomas Seifert. At present, Seifert and his colleagues are engaged in a joint project with RWE Power and Thyssen-Krupp to investigate heat-resistant nickel alloys for a new generation of power stations.

These will be built to operate at particularly high temperatures and achieve a higher degree of efficiency than today’s facilities.

Dr.-Ing. Thomas Peter Seifert | alfa
Further information:
http://www.fraunhofer.de/
http://www.fraunhofer.de/EN/press/pi/2008/08/ResearchNews082008Topic4.jsp
http://www.fraunhofer.de/EN/bigimg/2008/rn08fo4g.jsp

More articles from Automotive Engineering:

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>