Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting cars onto the road faster

16.02.2011
Auto manufacturers are looking for shorter production times, faster logistics processes, new materials and technologies. A novel software platform will help companies to achieve these goals by reducing not only the development times but also the development costs.

The auto industry faces major challenges. New models are entering the market at ever shorter intervals, products are becoming more complex, and the trend towards electric cars requires modified vehicle structures. European production sites are coming under increasing cost pressure from low-wage countries.


The fender with integrated LED tail light developed in the Pegasus project has been produced for demonstration purposes. (© Fraunhofer ICT)

Cost reductions, shorter production times, new materials and innovative assembly techniques are needed if companies are to remain competitive. To achieve these goals, 23 business and research organizations are participating in the EU’s Pegasus project (www.pegasus-eu.net). One of the research partners is the Fraunhofer Institute for Chemical Technology ICT in Pfinztal, which is contributing its expertise in the polymer engineering sector. The project partners have jointly developed a software platform to reduce development times and costs.

The Integrated Design and Engineering Environment (IDEE) is a CAD/CAE/CAM software system which is connected to an intelligent database. It analyzes the functional requirements of a product and identifies appropriate materials at an early stage of the development process. If, for example, a car roof is to be made in a different material than before, it is not necessary to conduct a new development process. Instead, the design engineers enter the component data into the software system, which assesses the information and then selects suitable materials and manufacturing processes. The platform also provides engineering guidelines for designing the tools that will be used to produce the component. The project partners have demonstrated how this platform could work on the example of a fender with integrated LED tail light. “We used the original fender from a Smart. Our project demonstrates how this complex component can be produced more quickly and cheaply with new processing techniques, materials, bonding agents and tools,” says Timo Huber, a scientist at Fraunhofer ICT. Instead of conventional lamps, the project partners fitted LED tail lights to the fender. This reduced the number of separate parts from eight to five, and the number of processing steps from twelve to five. Material and cost savings were also achieved by using conductor paths made of electrically conductive polymer. The conductive carbon nanotubes conduct the electricity from the connector to the LEDs and render metallic conductor structures superfluous.

A further example application: So that components such as the LED tail lights can be dismantled more quickly, they are bonded using a special adhesive. For this the research scientists at Fraunhofer ICT and their project partners developed a new microwave-active adhesive bonding system. When irradiated with microwaves the individual components lose their adhesion and can be easily taken apart. This means that parts can be efficiently recycled into different categories. “In addition, we dyed the fender using newly developed pigments based on special nanoparticles,” states Huber. These nanostructures can be worked in particularly evenly, to dye plastics such as polypropylene. This means fewer pigments are needed than usual. “We have also taken the importance of protecting the climate into account. Further developments in local fiber reinforcement of structural vehicle components will reduce weight and therefore emissions of CO2,” the scientist adds, and sums up: “All in all the IDEE system will shorten development times, cut the number of assembly steps and reduce the amount of material consumed.” IDEE is still under development, but it can already be used to produce simple components. The software should be ready and available to the auto industry in about a year’s time.

Timo Huber | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010-2011/14/getting-cars-onto-the-road-faster.jsp

Further reports about: Fraunhofer Institut ICT LED development time manufacturing process

More articles from Automotive Engineering:

nachricht When your car knows how you feel
20.12.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

nachricht Did you know how many parts of your car require infrared heat?
23.10.2017 | Heraeus Noblelight GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>