Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Getting cars onto the road faster

Auto manufacturers are looking for shorter production times, faster logistics processes, new materials and technologies. A novel software platform will help companies to achieve these goals by reducing not only the development times but also the development costs.

The auto industry faces major challenges. New models are entering the market at ever shorter intervals, products are becoming more complex, and the trend towards electric cars requires modified vehicle structures. European production sites are coming under increasing cost pressure from low-wage countries.

The fender with integrated LED tail light developed in the Pegasus project has been produced for demonstration purposes. (© Fraunhofer ICT)

Cost reductions, shorter production times, new materials and innovative assembly techniques are needed if companies are to remain competitive. To achieve these goals, 23 business and research organizations are participating in the EU’s Pegasus project ( One of the research partners is the Fraunhofer Institute for Chemical Technology ICT in Pfinztal, which is contributing its expertise in the polymer engineering sector. The project partners have jointly developed a software platform to reduce development times and costs.

The Integrated Design and Engineering Environment (IDEE) is a CAD/CAE/CAM software system which is connected to an intelligent database. It analyzes the functional requirements of a product and identifies appropriate materials at an early stage of the development process. If, for example, a car roof is to be made in a different material than before, it is not necessary to conduct a new development process. Instead, the design engineers enter the component data into the software system, which assesses the information and then selects suitable materials and manufacturing processes. The platform also provides engineering guidelines for designing the tools that will be used to produce the component. The project partners have demonstrated how this platform could work on the example of a fender with integrated LED tail light. “We used the original fender from a Smart. Our project demonstrates how this complex component can be produced more quickly and cheaply with new processing techniques, materials, bonding agents and tools,” says Timo Huber, a scientist at Fraunhofer ICT. Instead of conventional lamps, the project partners fitted LED tail lights to the fender. This reduced the number of separate parts from eight to five, and the number of processing steps from twelve to five. Material and cost savings were also achieved by using conductor paths made of electrically conductive polymer. The conductive carbon nanotubes conduct the electricity from the connector to the LEDs and render metallic conductor structures superfluous.

A further example application: So that components such as the LED tail lights can be dismantled more quickly, they are bonded using a special adhesive. For this the research scientists at Fraunhofer ICT and their project partners developed a new microwave-active adhesive bonding system. When irradiated with microwaves the individual components lose their adhesion and can be easily taken apart. This means that parts can be efficiently recycled into different categories. “In addition, we dyed the fender using newly developed pigments based on special nanoparticles,” states Huber. These nanostructures can be worked in particularly evenly, to dye plastics such as polypropylene. This means fewer pigments are needed than usual. “We have also taken the importance of protecting the climate into account. Further developments in local fiber reinforcement of structural vehicle components will reduce weight and therefore emissions of CO2,” the scientist adds, and sums up: “All in all the IDEE system will shorten development times, cut the number of assembly steps and reduce the amount of material consumed.” IDEE is still under development, but it can already be used to produce simple components. The software should be ready and available to the auto industry in about a year’s time.

Timo Huber | EurekAlert!
Further information:

Further reports about: Fraunhofer Institut ICT LED development time manufacturing process

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>