Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting cars onto the road faster

16.02.2011
Auto manufacturers are looking for shorter production times, faster logistics processes, new materials and technologies. A novel software platform will help companies to achieve these goals by reducing not only the development times but also the development costs.

The auto industry faces major challenges. New models are entering the market at ever shorter intervals, products are becoming more complex, and the trend towards electric cars requires modified vehicle structures. European production sites are coming under increasing cost pressure from low-wage countries.


The fender with integrated LED tail light developed in the Pegasus project has been produced for demonstration purposes. (© Fraunhofer ICT)

Cost reductions, shorter production times, new materials and innovative assembly techniques are needed if companies are to remain competitive. To achieve these goals, 23 business and research organizations are participating in the EU’s Pegasus project (www.pegasus-eu.net). One of the research partners is the Fraunhofer Institute for Chemical Technology ICT in Pfinztal, which is contributing its expertise in the polymer engineering sector. The project partners have jointly developed a software platform to reduce development times and costs.

The Integrated Design and Engineering Environment (IDEE) is a CAD/CAE/CAM software system which is connected to an intelligent database. It analyzes the functional requirements of a product and identifies appropriate materials at an early stage of the development process. If, for example, a car roof is to be made in a different material than before, it is not necessary to conduct a new development process. Instead, the design engineers enter the component data into the software system, which assesses the information and then selects suitable materials and manufacturing processes. The platform also provides engineering guidelines for designing the tools that will be used to produce the component. The project partners have demonstrated how this platform could work on the example of a fender with integrated LED tail light. “We used the original fender from a Smart. Our project demonstrates how this complex component can be produced more quickly and cheaply with new processing techniques, materials, bonding agents and tools,” says Timo Huber, a scientist at Fraunhofer ICT. Instead of conventional lamps, the project partners fitted LED tail lights to the fender. This reduced the number of separate parts from eight to five, and the number of processing steps from twelve to five. Material and cost savings were also achieved by using conductor paths made of electrically conductive polymer. The conductive carbon nanotubes conduct the electricity from the connector to the LEDs and render metallic conductor structures superfluous.

A further example application: So that components such as the LED tail lights can be dismantled more quickly, they are bonded using a special adhesive. For this the research scientists at Fraunhofer ICT and their project partners developed a new microwave-active adhesive bonding system. When irradiated with microwaves the individual components lose their adhesion and can be easily taken apart. This means that parts can be efficiently recycled into different categories. “In addition, we dyed the fender using newly developed pigments based on special nanoparticles,” states Huber. These nanostructures can be worked in particularly evenly, to dye plastics such as polypropylene. This means fewer pigments are needed than usual. “We have also taken the importance of protecting the climate into account. Further developments in local fiber reinforcement of structural vehicle components will reduce weight and therefore emissions of CO2,” the scientist adds, and sums up: “All in all the IDEE system will shorten development times, cut the number of assembly steps and reduce the amount of material consumed.” IDEE is still under development, but it can already be used to produce simple components. The software should be ready and available to the auto industry in about a year’s time.

Timo Huber | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010-2011/14/getting-cars-onto-the-road-faster.jsp

Further reports about: Fraunhofer Institut ICT LED development time manufacturing process

More articles from Automotive Engineering:

nachricht Two intelligent vehicles are better than one
04.10.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht The Future of Mobility: tomorrow’s ways of getting from A to B
07.09.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>