Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon methods keep bugs out of software for self-driving cars

22.06.2011
Analysis verifies safety of distributed car control system

Driver assistance technologies, such as adaptive cruise control and automatic braking, promise to someday ease traffic on crowded routes and prevent accidents. Proving that these automated systems will work as intended is a daunting task, but computer scientists at Carnegie Mellon University have now demonstrated it is possible to verify the safety of these highly complex systems.

To do so, the researchers first developed a model of a distributed car control system in which computers and sensors in each car combine to control acceleration, braking and lane changes, as well as entering and exiting the highway. They then used mathematical methods to formally verify that the system design would keep cars from crashing into each other.

"The system we created is in many ways one of the most complicated cyber-physical systems that has ever been fully verified formally," said Andre Platzer, an assistant professor of computer science. He and his collaborators, Ph.D. students Sarah M. Loos and Ligia Nistor, will present their findings at the International Symposium on Formal Methods, June 22 at the University of Limerick, Ireland.

"Auto accidents cost society billions of dollars and too many lives, so automated systems that could increase both the safety and efficiency of our roads only make sense," Platzer said. "It would be foolish to move to such a system, however, unless we can be certain that it won't create problems of its own. The dynamics of these systems have been beyond the scope of previous formal verification techniques, but we've had success with a modular approach to detecting design errors in them."

Formal verification methods are routinely used to find bugs in computer circuitry and software; Platzer is a leader in developing new techniques to verify complex computer-controlled devices such as aircraft collision avoidance systems and robotic surgery devices, known collectively as cyber-physical systems, or hybrid systems. He also is a member of the Computational Modeling and Analysis of Complex Systems (CMACS) center, a CMU-based initiative sponsored by the National Science Foundation to apply verification techniques to a variety of complex biological or physical systems.

Using these formal methods to either find errors in automated vehicle control or prove they are safe is particularly challenging, Platzer said. Like other cyber-physical systems, they must take into account both physical laws and the capabilities of the system's hardware and software. But vehicle control systems add another layer of complexity because they are distributed systems — that is, no single computer is ultimately in control, but rather each vehicle makes decisions in concert with other vehicles sharing the same road.

Platzer, Loos and Nistor showed that they could verify the safety of their adaptive cruise control system by breaking the problem into modular pieces and organizing the pieces in a hierarchy. The smallest piece consists of just two cars in a single lane. Building on that, they were able to prove that the system is safe for a single lane with an arbitrary number of cars, and ultimately for a highway with an arbitrary number of lanes. Likewise, they were able to show that cars could safely merge in and out of a single lane and then extended it to prove that cars could safely merge across a multi-lane highway.

Platzer cautioned that this proof has a major limitation — it only applies to straight highway. Addressing the problem of curved lanes, sensory inaccuracy and time synchronization are among the issues that will be a focus of future work. The methods the Carnegie Mellon researchers developed can, however, be generalized to other system designs or to variations in car dynamics.

"Any implementation of a distributed car control system would be more complicated than the model we developed," Platzer said. "But now at least we know that these future systems aren't so complex that we can't verify their safety."

This research was supported by the National Science Foundation and the Office of Naval Research. Follow the Carnegie Mellon School of Computer Science on Twitter @SCSatCMU.

About Carnegie Mellon University: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia, Europe and Mexico. The university is in the midst of a $1 billion fundraising campaign, titled "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Automotive Engineering:

nachricht 3D scans for the automotive industry
16.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht Improvement of the operating range and increasing of the reliability of integrated circuits
09.11.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>