Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Car Key Jams Teen Drivers' Cell Phones and Texting

12.12.2008
University of Utah researchers have developed an automobile ignition key that prevents teenagers from talking on cell phones or sending text messages while driving.

The university has obtained provisional patents and licensed the invention – Key2SafeDriving – to a private company that hopes to see it on the market within six months at a cost of less than $50 per key plus a yet-undetermined monthly service fee.

“The key to safe driving is to avoid distraction,” says Xuesong Zhou, an assistant professor of civil and environmental engineering who co-invented the system with Wally Curry, a University of Utah graduate now practicing medicine in Hays, Kan. “We want to provide a simple, cost-effective solution to improve driving safety.”

Zhou notes that “at any given time, about 6 percent of travelers on the road are talking on a cell phone while driving. Also at any given time, 10 percent of teenagers who are driving are talking or texting.” Studies have shown drivers using cell phones are about four times more likely to get in a crash than other drivers.

“As a parent, you want to improve driving safety for your teenagers,” he says. “You also want to reduce your insurance costs for your teen drivers. Using our system you can prove that teen drivers are not talking while driving, which can significantly reduce the risk of getting into a car accident.”

If things go as planned, the Key2SafeDriving system won’t be sold directly to consumers by a manufacturer, but instead the technology may be licensed to cell phone service providers to include in their service plans, says Ronn Hartman, managing partner of Accendo LC. The Kaysville, Utah, company provides early stage business consulting and “seed funding.” It has licensed the Key2SafeDriving technology from the University of Utah and is working to manufacture and commercialize it.

Hartman envisions gaining automobile and insurance industry backing so that Key2SafeDriving data on cell phone use (or non-use) while driving can be compiled into a “safety score” and sent monthly to insurance companies, which then would provide discounts to motorists with good scores. The score also could include data recorded via Global Positioning System (GPS) satellites on the driver’s speeding, rapid braking or running of lights, which are calculated by comparing the driver’s position with a database of maps, speed limits, stop lights and so on.

How Key2SafeDriving Works

The system includes a device that encloses a car key – one for each teen driver or family member. The device connects wirelessly with each key user’s cell phone via either Bluetooth or RFID (radio-frequency identification) technologies.

To turn on the engine, the driver must either slide the key out or push a button to release it. Then the device sends a signal to the driver’s cell phone, placing it in “driving mode” and displaying a “stop” sign on the phone’s display screen.

While in driving mode, teen drivers cannot use their cell phones to talk or send text messages, except for calling 911 or other numbers pre-approved by the parents – most likely the parents’ own cell numbers.

Incoming calls and texts are automatically answered with a message saying, “I am driving now. I will call you later when I arrive at the destination safely.”

When the engine is turned off, the driver slides the key back into the device, which sends a “car stopped” signal to the cell phone, returning it to normal communication mode.

The device can’t be “tricked” by turning the phone off and on again because the phone will receive the “driving mode” signal whenever the car key is extended.

Adult drivers cannot text or use a handheld cell phone, but the Key2SafeDriving system does allow them to talk using a hands-free cell phone – even though studies by University of Utah psychologists indicate hands-free phones are just as distracting as handheld phones.

Curry agrees that driving while talking on any cell phone “is not safe,” but he says the inventors have to face the practical issue of whether adults would buy a product to completely block their cell phone use while driving.

Limiting some cell calls by adults “is a step in the right direction,” he says.

Zhou says the goal for adults is to improve safety by encouraging them to reduce the time they spend talking while driving. The encouragement could come in the form of insurance discounts by insurers, who would receive monthly scores from Key2SafeDriving showing how well an adult driver avoided talking while driving.

An Invention is Born

The new invention began with Curry, a Salt Lake City native who graduated from the University of Utah with an accounting degree and premedical training in 1993. He returned from the Medical College of Wisconsin for his surgical residency in urology at University Hospital during 1998-2003. He now is a urologist in Hays, Kan.

His concern with driving-while-talking began because, as a doctor, “the hospital is calling me all the time on my cell phone when I’m driving.”

One day while driving home, he saw a teenage girl texting while driving, making him worry about his 12- and 14-year-old daughters, who are approaching driving age.

“I thought, this is crazy, there has got to be something to stop this, because not only is she putting people at risk, but so was I,” Curry says. “It struck me pretty hard that something should be done.”

Curry’s initial idea was a GPS system to detect a moving cell phone and disable it when it moved at driving speeds. Meanwhile, someone else developed a similar system based on the same idea. But it cannot distinguish if the cell phone user is driving a car or is a passenger in a moving car, bus or train – a problem overcome by Key2SafeDriving.

In early 2008, Curry called Larry Reaveley, a civil engineering professor at the University of Utah, who suggested Curry contact Zhou, a specialist in “intelligent” transportation systems. Zhou and Curry then came up with the idea of blocking cell phone usage via a vehicle ignition key.

Zhou, a native of Liuzhou, China, joined the University of Utah faculty in early 2007. He received his Ph.D. degree from the University of Maryland in 2004. He has worked for a California company that sold a product that provides traffic information to motorists using GPS satellites.

A short video about Key2SafeDriving may be viewed at:
http://www.youtube.com/watch?v=OEIMUsnvucE
or downloaded as a Windows Media Player (wmv) file from:
http://www.civil.utah.edu/~zhou/cellkey.wmv
Video credit: Ana Antunes, University of Utah
The video and additional information about Key2SafeDriving are available at:
http://www.Key2SafeDriving.net
Public inquiries may be directed to:
key2safedriving@accendolc.com
For more information on the University of Utah College of Engineering, see:
http://www.coe.utah.edu
Contacts:
-- Xuesong Zhou, assistant professor of civil and environmental engineering –
cellular (801) 696-5651, office (801) 585-6590, zhou@eng.utah.edu
-- Wally Curry, University of Utah alumnus in Hays, Kan. –
cellular (785) 259-4801, wallaceandkaren@yahoo.com

Lee Siegel | Newswise Science News
Further information:
http://www.utah.edu

More articles from Automotive Engineering:

nachricht ShAPEing the future of magnesium car parts
23.08.2017 | DOE/Pacific Northwest National Laboratory

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>