Battery-powered vehicles to be revolutionized by Universite de Montreal technology

Thousands of small electric scooters, bicycles and wheelchairs throughout Europe and Asia are powered by LifePO4 –- a material used in advanced lithium-ion batteries developed by Université de Montréal researchers.

“It's a revolutionary battery because it is made from non-toxic materials abundant in the Earth's crust. Plus, it's not expensive,'” says Michel Gauthier, an invited professor at the Université de Montréal Department of Chemistry and co-founder of Phostech Lithium, the company that makes the battery material. “This battery could eventually make the electric car very profitable.”

The theory will soon be tested, since the 100 percent electric Microcar that's set to debut in Europe this year will be and powered by the LifePO4 battery.

Phostech Lithium's production plant in St. Bruno, Quebec, produces the black LifePO4 powder, which is shipped across the world in tightly sealed barrels.

“The theoretical principle behind the battery was patented by a University of Texas professor in 1995. However, without the work of local chemists such as Nathalie Ravet, we couldn't have developed it,” says Phostech Lithium engineer Denis Geoffroy.

Süd-Chemie, a leading specialty chemistry company based in Germany, first invested in Phostech Lithium in 2005. Now, just four years later, Süd-Chemie's total Canadian investments have reached $13 million and it stands as the 100% owner of Phostech Lithium. Phostech's St. Bruno plant began to produce LiFePO4 in 2006 with 20 employees and a 400 metric-ton capacity. Since then, Phostech has nearly doubled its staff.

“It is a battery that is much more stable and much safer,” says Dean MacNeil, a professor at the Université de Montréal's Department of Chemistry and new NSERC-Phostech Lithium Industrial Research Chair in Energy Storage and Conversion. “In addition, it recharges much faster than previous batteries.”

The NSERC Research Chair, funded in part by Phostech Lithium, will help investigate ways to improve the LifePO4 battery.

For Gauthier, Phostech Lithium is the product of academia and the business world coming together. “Even if we knew that lithium, iron and phosphate were theoretically promising materials, we had to make them efficient. We had to find the right voltage and maintain the right charging and discharging properties. This is where the university played a major role.”

Media Contact

Sylvain-Jacques Desjardins EurekAlert!

All latest news from the category: Automotive Engineering

Automotive Engineering highlights issues related to automobile manufacturing – including vehicle parts and accessories – and the environmental impact and safety of automotive products, production facilities and manufacturing processes.

innovations-report offers stimulating reports and articles on a variety of topics ranging from automobile fuel cells, hybrid technologies, energy saving vehicles and carbon particle filters to engine and brake technologies, driving safety and assistance systems.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors