Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aisin Seki Co., Ltd, Japan, pioneers new economic electric water cooling pump for automobiles

31.08.2012
The low cost, high efficiency electric pump offers an environmentally friendly alternative to mechanical counterparts. Aisin Seki Co., Ltd has now successfully developed a smaller, cheaper electric cooling pump through some effective efficiency optimisations.
Cars traditionally use mechanical water cooling pumps, which have a flow rate dependent on the engine speed. Electric cooling pumps offer greater control over the water flow allowing significant fuel economies, particularly important in view of rising environmental concerns. However electric pumps are traditionally much larger than their mechanical counterparts.

Among other adaptations the Aisin electric pump uses a newly shaped impeller to improve performance. In addition, the design positions the components so that both the motor efficiency and the centrifugal pump mutually benefit. The pump also uses fewer components, allowing it to occupy less space.
With the efficiency improvements less heat is generated. The pump design also incorporates an aluminium enclosure, which acts as a heat sink, further easing the heat resistance requirements. Notably, the cost of the electric pump was reduced by using an inexpensive and heat resistant printed circuit board.

Customer satisfaction and concern for the environment are important aspects of the company’s ‘quality first’ corporate principle. The new engine pump will allow significant fuel economies, reducing fossil fuel consumption, and the expense of running the engine. It has been designed so that it can be installed in the same position as mechanical pumps, thereby simplifying the move to electric powered pumps.
Press Inquiries:
Aisin Seki Co. Ltd Public Relations
koho@rpr.aisin.co.jp
2-1, Asahi-machi, Kariya, Aichi, 448-8650 JAPAN


Background
Fuel reduction is a primary concern for automobiles running on diesel, as well as hybrid engines that use other power sources in addition to diesel. The main motivation is the effect of fuel consumption on environmental factors, although economizing on fuel also has financial rewards.
Controlling the water flow in engine cooling systems has been identified as an effective approach to fuel reduction. Following work to develop electric pumps for cooling inverters, Aisin Seki has now focused on automobile cooling systems. Electric pumps run independently of the engine speed, which allows greater control over the water flow and consequently reductions in fuel consumption.

The technology
To substitute mechanical pumps with electric ones they should operate in the same part of the engine. The main issue in attempting to substitute mechanical pumps with electric ones is size. Electric pumps tend to be much larger in order to achieve the same discharge flow rate.

Aisin Seki electric water cooling pump installed in engine (red circle) © Aisin Seiki


Aisin Seki electric water cooling pump (connecting side) © Aisin Seiki

Aisin Seki has tackled a number of factors that impinge on the efficiency of electric pumps. These efficiency enhancements mean that the size of their pumps can be decreased. Three elements affect the overall efficiency of the electric pump: the driver, the motor and the pump itself, which generally has a low efficiency.

1. Improving pump efficiency

Optimizations to the shape of the impeller enabled more effective pumping operation. In addition, an operation point that mutually benefits the efficiency of pump and motor was identified. The pump is centrifugal. The operation point that allows maximum efficiency for the motor and pump differs, but a compromise was found.

2. Economizing on component parts

Mechanical pumps harness the engine’s power through a pump pulley connected to the engine crank. The rotation of the crank then drives the pump, which is connected to the pulley by a shaft. Mechanical seals on the shaft prevent leaking of the cooling water. On the contrary, the electric pump which is driven directly by its motor so these seals could be eliminated. Resin protects the electric motor parts from rust.

3. Cutting costs

The opportunity to economize on costs was exploited with the use of a cheaper print board. Although the heat resistance may be lower for the cheaper print board, the optimized efficiency of the electric pump reduces the heat generated. An aluminum enclosure was also incorporated, which acts as a heat sink, further reducing the level of heat resistance needed in the print board.

Technical references

These findings were presented at the 2011 Annual Congress of the Society of Automobile Engineers of Japan (JSAE)
Atsushi Saito and Motohisa Ishiguro, JSAE Annual Congress on 5, 19, (2011).
JSAE website: http://www.jsae.or.jp/taikai/index_e.php (Direct links below)

About Aisin Seki Co. Ltd

Aisin Seki produces and sells automobile parts as well as living, energy and welfare related products. The company is committed to its corporate principles that focus on putting ‘quality first’. Aisin Seki has 2 offices and 11 plants across Japan with over 90,000 employees and subsidiaries that include 69 companies in Japan and 101 overseas. As of 31 March 2012, the company’s capital was 45 billion JPY. For more information visit http://www.aisin.com/.

About Aisin Seki Co. Ltd Automotive Parts and Systems Business
As the automotive industry constantly evolves with increasing emphasis on functionality and performance, Aisin Seki continues to respond with fast innovations exploiting its world class resources and experise in automobile technology. In line with its corporate principle of placing ‘quality first’, the company prioritises environmental commitments throughout its development of advanced systems and modules. For more information visit http://www.aisin.com/profile/business/
Associated links
Aisin Seki Co. Ltd
Society of Automobile Engineers of Japan (JSAE)
Aisin Seki Co. Ltd Automotive Parts and Systems Business

Adarsh Sandhu | Research asia research news
Further information:
http://www.aisin.co.jp
http://www.researchsea.com

More articles from Automotive Engineering:

nachricht The Future of Mobility: tomorrow’s ways of getting from A to B
07.09.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht ShAPEing the future of magnesium car parts
23.08.2017 | DOE/Pacific Northwest National Laboratory

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>