Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A reactive human model increases traffic safety and helps crash test dummies do their job

18.09.2014

Every day, nearly 75 people lose their lives on Europe’s roads. The Austrian VIRTUAL VEHICLE Research Center is developing a new human model for use in simulating accident scenarios.

Research partners in this undertaking are the Graz University of Technology and industrial partners such as Audi, BMW, Daimler, Porsche and Volkswagen. This new model is able to simulate the movement of vehicle occupants more accurately than before, particularly in the moments just before impact, and in the long run will further improve vehicle safety systems. The numerical simulation model provides a virtual representation of the human body with its muscles with special focus on the pre-crash phase.


The crash test dummy now has a virtual partner: The reactive human model.

Photo: VIRTUAL VEHICLE


A vehicle for occupant testing: A system to measure the occupant kinematics is mounted on the vehicle’s roof.

Photo: VIRTUAL VEHICLE

The automotive industry has invested heavily in the development of safety systems. In addition to continual improvements to passive systems such as seatbelts, high-tech seats and airbags, the trend is to work on active systems that recognize danger or on brake assistance. In this manner, the number of fatal traffic accidents could be significantly reduced. Despite these improvements, 75 people die on Europe’s roads per day. That is 75 too many. The European Commission has given itself the target of at least halving the number of fatalities by 2020.

So far, crash tests have typically been employed to test the effectiveness of passive safety systems. To this end dummies equipped with various sensors are subjected to crash tests and injury risks are derived from the measured loads. It is very important to not only examine the crash phase but also the pre-crash phase, because in the few seconds prior to the crash event, humans attempt to prepare themselves for impact with protective movements and muscle activity. This preparation results in the vehicle occupants having a very different position prior to impact compared to a normal situation. This in turn has significant effects on the protective function of safety systems such as airbag etc. Crash test dummies have not been able to take factors such as these into account. Simulations are especially useful in the development of active safety systems. The room for improvement in passive safety systems is practically exhausted.

Numerical Simulation Model for Integrated Safety

The numerical simulation of human kinematics in the pre-crash phase enables the realistic and virtual design of integrative safety systems that can intervene prior to impact. This intervention can significantly reduce the severity of the accident, if not even avoid it completely. Brake assistants, for example, use camera systems to recognize dangerous situations even before the driver becomes aware of them. Exact models that describe human behaviour during brake and steering manoeuvres in emergency situations are crucial in order to be able to develop such new, integrative safety systems.

VIRTUAL VEHICLE has developed the human model in order to recreate such reactive and intuitive movement in numerical simulations. This development enables automotive manufacturers and suppliers to improve their understanding of the kinematics of human vehicle occupants in accident scenarios and to incorporate their findings in the development of safety systems.

The big challenge in this project is to integrate two very different physical areas into a single numerical model. On the one hand, the “gentle” phase before the crash, and on the other the “hard” actual crash event itself with very high loads. A few seconds before impact, the occupants are only subjected to relatively low forces, depending on the frictional attributes of the tyres and the brake system, which permits a wide range of possible human reactions. However, during a crash event, very high accelerations within 100 milliseconds occur, which require optimised interactive cooperation between seatbelt, airbag and the vehicle interior.

Real Tests for Realistic Simulation

New vehicle tests were employed in order to obtain a realistic and representative set of data for the configuration of the simulation model. Instead of simple sled tests, the kinematic behaviour (movement capture) of 60 test subjects was directly determined for various emergency stop, lane change and combined manoeuvres in order to obtain genuinely realistic results. The kinematics of the vehicle, the occupant and the associated muscle activity were accurately measured and recorded.

The reactive human model OM4IS provides important support to the automotive industry for the development and design of integrated safety systems, for example the further development of emergency brake assistants, or the exact adaptation of airbag deployment to certain crash situations.

Currently, the new simulation model is in the further development and test phase together with the partnership for Dummy Technology and Biomechanics, represented by the cooperation platform of German automotive manufacturers Audi, BMW, Daimler, Porsche and Volkswagen. The system can also offer crucial answers to current questions relating to the development of highly automated or autonomous driving systems. How much braking force can be applied in an emergency situation, or how much swerving can be done during an avoidance manoeuvre, without endangering the passengers? The new simulation model is not only a valuable supplement for the simulation and forecast of passenger kinematics before a collision, but can also be a replacement for elaborate and expensive crash tests.

VIRTUAL VEHICLE’s new, reactive human model will play a major role in increasing safety on the roads and is a huge step towards the EU’s ambitious target of halving the number of traffic fatalities by the year 2020. The project, which has been running since March 2009, has recently been nominated for the prestigious business award from the province of Steiermark, the “Austrian Fast Forward Award”.

Weitere Informationen:

http://www.v2c2.at - VIRTUAL VEHICLE Research Center

Elisabeth Pichler | idw - Informationsdienst Wissenschaft

More articles from Automotive Engineering:

nachricht Improved Performance thanks to Reduced Weight
24.07.2017 | Technische Universität Chemnitz

nachricht New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time
29.06.2017 | Universität Stuttgart

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>