Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless Sensors and Flying Robots: A Way to Monitor Deteriorating Bridges

18.08.2014

As a recent report from the Obama administration warns that one in four bridges in the United States needs significant repair or cannot handle automobile traffic, Tufts University engineers are employing wireless sensors and flying robots that could have the potential to help authorities monitor the condition of bridges in real time.

Today, bridges are inspected visually by teams of engineers who dangle beneath the bridge on cables or look up at the bridge from an elevated work platform. It is a slow, dangerous, expensive process and even the most experienced engineers can overlook cracks in the structure or other critical deficiencies.

A New Monitoring System for Bridges

In the detection system being developed by Babak Moaveni, an assistant professor of civil and environmental engineering at Tufts School of Engineering, smart sensors are attached permanently to bridge beams and joints. Each sensor can continuously record vibrations and process the recorded signal. Changes in the vibration response can signify damage, he says.

... more about:
»Flying »Monitor »NSF »Robots »Sensors »Tufts »Wireless »bridges »damage »measurements

Moaveni, who received a grant from the National Science Foundation (NSF) for his research, is collaborating with Tufts Assistant Professor of Electrical and Computer Engineering Usman Khan to develop a wireless system that would use autonomous flying robots (quad-copters) to hover near the sensors and collect data while taking visual images of bridge conditions.

The drone-like robots would transmit data to a central collection point for analysis. Khan received a $400,000 Early Career Award from the NSF earlier this year to explore this technology, which requires addressing significant navigational and communications challenges before it could be a reliable inspection tool.

The recent Obama administration report that analyzed the condition of the transportation infrastructure, points across the country out that 25 percent of the approximately 600,000 bridges are in such a poor state that they are incapable of handling daily automobile traffic. In Massachusetts, more than 50 percent of the 5,136 bridges in use are deficient, the report says.

Moaveni and Khan's work could help monitor bridges and identify those that are at risk more accurately than current methods. Once installed, the sensors would provide information about the condition of bridges that cannot be obtained by visual inspection alone and would allow authorities to identify and focus on bridges that need immediate attention.

Moaveni installed a network of 10 wired sensors in 2009 on a 145-foot long footbridge on Tufts’ Medford/Somerville campus. In 2011, Moaveni added nearly 5,000 pounds of concrete weights on the bridge deck to simulate the effects of damage on the bridge—a load well within the bridge’s limits.

Connected by cables, the sensors recorded readings on vibration levels as pedestrians walked across the span before and after installation of the concrete blocks. From the changes in vibration measurements, Moaveni and his research team could successfully identify the simulated damage on the bridge, validating his vibration-based monitoring framework.

A major goal of his research, Moaveni says, is to develop computer algorithms that can automatically detect damage in a bridge from the changes in its vibration measurements. His work is ongoing. "Right now, if a bridge has severe damage, we’re pretty confident we can detect that accurately. The challenge is building the system so it picks up small, less obvious anomalies." 

Tufts University School of Engineering Located on Tufts' Medford/Somerville campus, the School of Engineering offers a rigorous engineering education in a unique environment that blends the intellectual and technological resources of a world-class research university with the strengths of a top-ranked liberal arts college. Close partnerships with Tufts' excellent undergraduate, graduate and professional schools, coupled with a long tradition of collaboration, provide a strong platform for interdisciplinary education and scholarship.

The School of Engineering’s mission is to educate engineers committed to the innovative and ethical application of science and technology in addressing the most pressing societal needs, to develop and nurture twenty-first century leadership qualities in its students, faculty, and alumni, and to create and disseminate transformational new knowledge and technologies that further the well-being and sustainability of society in such cross-cutting areas as human health, environmental sustainability, alternative energy, and the human-technology interface.

Contact Information

Alexander Reid
Assoc. Dir. of Public Relations-Medford/Somerville
alexander.reid@tufts.edu
Phone: 617-627-4173

Alexander Reid | newswise

Further reports about: Flying Monitor NSF Robots Sensors Tufts Wireless bridges damage measurements

More articles from Architecture and Construction:

nachricht NEST: building of the future is up and running
23.05.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Designing buildings with a positive energy balance
18.03.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>