Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urban planning: City dynamics yield to computer modeling

12.09.2013
A new computer model of city dynamics could pave the way to planning sustainable urban areas

The sustainability of cities is a challenge facing planners across the globe. The numerous complex and wide-ranging interactions between energy consumption, water use, transportation and population dynamics make cities intrinsically complicated systems to study.


Land use in cities can now be modeled by computer software that allows researchers to predict details such as energy use on individual plots of land. © Brand X Pictures/Thinkstock

Christopher Monterola and co-workers at A*STAR’s Institute of High Performance Computing, Singapore, have created a computer modeling system capable of characterizing land-use patterns in different cities1. This software provides planners with the ability to define the features of a particular city, as well as compare and contrast these features with those of other cities.

A city is a complex system, and complex systems evolve as a result of highly interacting units driven by a simple mechanism, Monterola notes. “Understanding the underlying simplicity in the growth of cities will allow us to model the emergence of city dynamics more accurately and, more importantly, learn to shape a city’s growth based on our desired outcomes.”

The team worked with high-resolution image data for Singapore and eight North American cities. They painstakingly categorized land-use into business, residential or industrial sectors, pixel by pixel, for each city. To analyze the dispersion and aggregation of land use types across the urban space, the computer model used two parameters — ‘spatial entropy’, which describes how a given sector is spread across space, and an ‘index of dissimilarity’, which measures the relative mixing of sectors.

“The lower the entropy number, the more densely clustered a given sector is,” explains Monterola. “In the cities studied, industrial areas were generally clustered and distinct from residential and business zones. There is ‘safety in numbers’, but only if the resources required by [a] specific sector are not compromised.”

The index of dissimilarity helped to define the efficiency of different urban factors, especially transportation and energy consumption. In follow-up work, the team successfully modeled the emergence of land use in cities, the surface temperatures for individual plots of land and even accurately estimated ridership — how many people are using public transport at any one time.

“The good visual and statistical resemblance of our simulations to actual cities hints at the robustness of this work so far,” says Monterola. “We will add more details, including schools, churches and so on, with the aim of capturing the day-to-day routines of people in a city.” Monterola believes that this groundwork will yield predictive models of different urban activities resulting from easily measured parameters that will be useful as guides for planners.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6749
http://www.researchsea.com

More articles from Architecture and Construction:

nachricht Flexible protection for "smart" building and façade components
30.11.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Healthy living without damp and mold
16.11.2016 | Fraunhofer-Gesellschaft

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>