Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urban planning: City dynamics yield to computer modeling

12.09.2013
A new computer model of city dynamics could pave the way to planning sustainable urban areas

The sustainability of cities is a challenge facing planners across the globe. The numerous complex and wide-ranging interactions between energy consumption, water use, transportation and population dynamics make cities intrinsically complicated systems to study.


Land use in cities can now be modeled by computer software that allows researchers to predict details such as energy use on individual plots of land. © Brand X Pictures/Thinkstock

Christopher Monterola and co-workers at A*STAR’s Institute of High Performance Computing, Singapore, have created a computer modeling system capable of characterizing land-use patterns in different cities1. This software provides planners with the ability to define the features of a particular city, as well as compare and contrast these features with those of other cities.

A city is a complex system, and complex systems evolve as a result of highly interacting units driven by a simple mechanism, Monterola notes. “Understanding the underlying simplicity in the growth of cities will allow us to model the emergence of city dynamics more accurately and, more importantly, learn to shape a city’s growth based on our desired outcomes.”

The team worked with high-resolution image data for Singapore and eight North American cities. They painstakingly categorized land-use into business, residential or industrial sectors, pixel by pixel, for each city. To analyze the dispersion and aggregation of land use types across the urban space, the computer model used two parameters — ‘spatial entropy’, which describes how a given sector is spread across space, and an ‘index of dissimilarity’, which measures the relative mixing of sectors.

“The lower the entropy number, the more densely clustered a given sector is,” explains Monterola. “In the cities studied, industrial areas were generally clustered and distinct from residential and business zones. There is ‘safety in numbers’, but only if the resources required by [a] specific sector are not compromised.”

The index of dissimilarity helped to define the efficiency of different urban factors, especially transportation and energy consumption. In follow-up work, the team successfully modeled the emergence of land use in cities, the surface temperatures for individual plots of land and even accurately estimated ridership — how many people are using public transport at any one time.

“The good visual and statistical resemblance of our simulations to actual cities hints at the robustness of this work so far,” says Monterola. “We will add more details, including schools, churches and so on, with the aim of capturing the day-to-day routines of people in a city.” Monterola believes that this groundwork will yield predictive models of different urban activities resulting from easily measured parameters that will be useful as guides for planners.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6749
http://www.researchsea.com

More articles from Architecture and Construction:

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>