Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researchers help find way to protect historic limestone buildings

05.12.2012
Water-resistant coating guards limestone from pollution
Buildings and statues constructed of limestone can be protected from pollution by applying a thin, single layer of a water-resistant coating.

That’s the word from a University of Iowa researcher and her colleagues from Cardiff University in a paper published in the journal Scientific Reports, from the publishers of Nature. In the study, the researchers report a new way to minimize chemical reactions that cause buildings to deteriorate, according to Vicki Grassian, F. Wendell Miller professor in the UI departments of chemistry and chemical and biochemical engineering.

The coating includes a mixture of fatty acids derived from olive oil and fluorinated substances that increase limestone’s resistance to pollution.

“This paper demonstrates that buildings and statues made out of limestone can be protected from degradation by atmospheric corrosion, such as corrosion due to pollutant molecules and particulate matter in air, by applying a thin, one-layer coating of a hydrophobic coating,” she says. “We showed in particular that the degradation of limestone from reaction with sulfur dioxide and sulfate particles could be minimized with an application of this coating.“

One of the buildings the researchers chose for their study was York Minster, a cathedral located in York, England, and one of the largest structures of its kind in northern Europe. Construction of the current cathedral began in the 1260s, and it was completed and consecrated in 1472.

Grassian says York Minster was a perfect structure to study because its limestone surface has been exposed for decades to acid rain, sulfur dioxide and other pollutants. She notes other historic limestone structures could benefit from the coating, including many in the United States.

She notes other attempts have been made to protect existing stonework in cultural heritage sites; however, those coatings block the stone microstructure and prevent the edifice from “breathing,” thus creating mold and salt buildup.

Grassian, along with fellow authors Gayan Rubasinghege and Jonas Baltrusatis of the UI chemistry department, have been studying for years reactions of atmospheric gases with minerals such as limestone. In earlier studies, they have shown through detailed analysis that sulfur dioxide could easily degrade limestone and that this degradation reaction was enhanced in the presence of relative humidity.

The lead authors of the paper are Rachel A. Walker, Karen Wilson, and Adam F. Lee, all of Cardiff University, U.K.

The research was funded through the EPSRC/AHRC (Engineering and Physical Science Research Council/Arts and Humanities Research Council) Science and Heritage Programme. Grassian and her colleagues were funded by the National Science Foundation.

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Architecture and Construction:

nachricht Construction Impact Guide
18.05.2018 | Hochschule RheinMain

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Scientists predict a new superhard material with unique properties

18.06.2018 | Materials Sciences

Squeezing light at the nanoscale

18.06.2018 | Physics and Astronomy

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>