Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thinner thermal insulation

01.12.2011
Insulation panels that are both thin and effective are expensive. At present these high-end products are built into energy-saving refrigerators. Innovative components and production techniques are now set to sink the costs – so that private home-builders can also benefit from the new technology.

In Germany, the rising cost of heating has sparked a renovation boom. In order to lower energy costs, more and more homeowners are investing in insulation facades. But the typical insulation layers on the market have one drawback: they add bulk. The 20-centimeter-thick outer skin changes the building’s visual appearance and can result in significant follow-up costs – with a need to fit new, deeper window sills and sometimes even roof extensions.


Vacuum insulation panels, VIPs for short, insulate ten times better than conventional insulation of the same thickness. © va-Q-tec AG

Fraunhofer researchers are now developing films for a material that will insulate homes without much additional structural alteration: vacuum isolation panels, VIPs for short. The panels are only two centimeters thick and yet perform just as well as a classic 15-centimeter-thick insulation layer made from polyurethane foam. The inner workings of the VIPs are made mostly from pyrogenic silica. A high-tech film holds the material together and makes it air-tight.

Dr. Klaus Noller from the Fraunhofer Institute for Process Engineering and Packaging IVV in Freising and Prof. Gerhard Sextl from the Fraunhofer Institute for Silicate Research ISC in Würzburg have been involved with the development of VIPs since the very beginning. They now want to ready the panels for cost-effective mass production. “The key elements are the films: they dictate the quality, life span and price,” acknowledges Noller. “The current production method is time-consuming and expensive: three of the five layers of plastic have to be coated with aluminum and stuck together. This requires seven production steps, which drives the price up.” At present, these expensive VIPs are employed only where a space saving is worth the money: for example in high-end refrigerators and freezers.

The new film is easier to produce because it is made up of just two plastic films with three barrier layers: one aluminum-coated plastic film is coated with a micrometer-thin layer of ORMOCER® – an ISC invention – and then coated again with aluminum. ORMOCER®s contain an organic-inorganic hybrid silicon-oxygen polymer matrix, which makes the material exceptionally tight and stable. “That’s what makes it perfect for insulation panels,” says Noller. “Gases and liquids cannot easily penetrate the ORMOCER® layer.” The new insulation films can be fashioned in just five stages. First a film is coated, then the ORMOCER® layer applied, then coated a second time before the barrier film is applied to the sealing film. “The end product is better and cheaper than the insulation films already on the market,” claims Sextl.

Researchers have also optimized the production of the VIP insulation elements: at the Fraunhofer Application Center for Processing Machines and Packaging Technology AVV in Dresden they have developed an automated process for gently sealing the pyrogenic silica cores with the high-barrier film. The films and production process have now been patented. As soon as the new VIPs are being produced in large enough quantities, the price should fall. Sextl and Noller are convinced that the thin panels will then be of interest for the building industry.

Now researchers want to simplify the production process further and carry out long-term tests. Until now the panels had to last just twelve years – the average lifespan of a refrigerator. The building sector has higher expectations: a facade should last fifty years. Noller and his colleagues are now testing the stability of films and insulation elements in climate chambers, which simulate the seasonal changes in heat and frost and in humidity. The results should be available in just a few months.

Dr. Klaus Noller | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2011/december/thinner-thermal-insulation.html

More articles from Architecture and Construction:

nachricht Magnetic liquids improve energy efficiency of buildings
16.01.2018 | Friedrich-Schiller-Universität Jena

nachricht Insulating bricks with microscopic bubbles
16.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>