Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying the behaviour of steel tubes filled with concrete foam

31.03.2014

UiTM researchers have found that steel tubes filled with foam concrete was inferior in strength as compared to that of normal concrete.

A team of researchers from the Faculty of Civil Engineering, UiTM, studied the use of foam concrete as infill for steel tubes that were used in construction.

Concrete-filled steel tube (CFST) structure is a composite structure and consists of a steel tube that is filled up with concrete. There are many advantages of using composite structure as compared to conventional reinforced concrete (RC) structure and steel structure.

Steel tubes infilled with composite foam concrete are cheaper and it is easier to use in construction. The application of this composite structure has become increasingly popular in structural applications.

However, the use of foamed concrete as infilled material is rare and has not been studied comprehensively. Thus, this research was conducted to investigate the strength and structural behaviour of CFSTs filled with different densities of foamed concrete and with different replacement levels of Waste Paper Ash (WPSA) to cement by weight under axial (compression) loading.

All CFST column specimens were loaded on the entire surface of the CFST column specimens under axial loading. The results of the experiment showed that the series contained different densities of the foamed concrete failed at loads less than 90% of the analytical values.

It also appears that the ultimate strength of the CFST specimens mainly depends upon the strength of the infill material. The study found that the CFST specimen that is infilled with concrete attain higher strength than those of without infilled concrete.

It was found that the CFST that was infilled with foam concrete was notably inferior in strength as compared to that of normal concrete. However, higher strength of CFST is achieved when higher density of foamed concrete is adopted as infilled material.

For more information, contact
PROF. DR. HANIZAH ABDUL HAMID. hanizah696@salam.uitm.edu.my

PROF. DR. AZMI IBRAHIM
ASSOC. PROF. DR. HAMIDAH MOHD. SAMAN
ARUAN EFFENDY MOHD. GHAZALI
MOHD. RAIZAMZAMANI MD. ZAIN

Faculty of Civil Engineering
Universiti Teknologi MARA
40450 UiTM Shah Alam
SELANGOR D. EHSAN

Darmarajah Nadarajah | ResearchSEA News
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

Further reports about: Engineering UiTM behaviour conducted construction conventional foam specimens structural structure tubes

More articles from Architecture and Construction:

nachricht Smarter window materials can control light and energy
23.07.2015 | University of Texas at Austin

nachricht University of Cincinnati, industry partners develop low-cost, 'tunable' window tintings
11.06.2015 | University of Cincinnati

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

A New Litmus Test for Chaos?

29.07.2015 | Physics and Astronomy

New Computer Model Could Explain how Simple Molecules Took First Step Toward Life

29.07.2015 | Life Sciences

New ERC calls published under Horizon 2020

29.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>