Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying the behaviour of steel tubes filled with concrete foam

31.03.2014

UiTM researchers have found that steel tubes filled with foam concrete was inferior in strength as compared to that of normal concrete.

A team of researchers from the Faculty of Civil Engineering, UiTM, studied the use of foam concrete as infill for steel tubes that were used in construction.

Concrete-filled steel tube (CFST) structure is a composite structure and consists of a steel tube that is filled up with concrete. There are many advantages of using composite structure as compared to conventional reinforced concrete (RC) structure and steel structure.

Steel tubes infilled with composite foam concrete are cheaper and it is easier to use in construction. The application of this composite structure has become increasingly popular in structural applications.

However, the use of foamed concrete as infilled material is rare and has not been studied comprehensively. Thus, this research was conducted to investigate the strength and structural behaviour of CFSTs filled with different densities of foamed concrete and with different replacement levels of Waste Paper Ash (WPSA) to cement by weight under axial (compression) loading.

All CFST column specimens were loaded on the entire surface of the CFST column specimens under axial loading. The results of the experiment showed that the series contained different densities of the foamed concrete failed at loads less than 90% of the analytical values.

It also appears that the ultimate strength of the CFST specimens mainly depends upon the strength of the infill material. The study found that the CFST specimen that is infilled with concrete attain higher strength than those of without infilled concrete.

It was found that the CFST that was infilled with foam concrete was notably inferior in strength as compared to that of normal concrete. However, higher strength of CFST is achieved when higher density of foamed concrete is adopted as infilled material.

For more information, contact
PROF. DR. HANIZAH ABDUL HAMID. hanizah696@salam.uitm.edu.my

PROF. DR. AZMI IBRAHIM
ASSOC. PROF. DR. HAMIDAH MOHD. SAMAN
ARUAN EFFENDY MOHD. GHAZALI
MOHD. RAIZAMZAMANI MD. ZAIN

Faculty of Civil Engineering
Universiti Teknologi MARA
40450 UiTM Shah Alam
SELANGOR D. EHSAN

Darmarajah Nadarajah | ResearchSEA News
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

Further reports about: Engineering UiTM behaviour conducted construction conventional foam specimens structural structure tubes

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>