Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart buildings through innovative membrane roofs and façades

31.08.2017

The Cooperative Research Project FLEX-G started on June 1, 2017 under the federal construction technology initiative named ENERGIEWENDEBAUEN funded by the German Federal Ministry for Economic Affairs and Energy (FR 03ET1470A). The main goal of the research project is to investigate technologies for the manufacturing of translucent and transparent membrane roof and façade elements with integrated optoelectronic components. The focus lies on a switchable total energy transmittance (often referred to as the solar factor or solar heat gain and “g-value” in Europe) and on flexible solar cell integration to significantly contribute to both energy saving and power generation in buildings.

Solar modules and a variety of energy management systems are well established in small and large buildings to optimize their energy balance both by generating electrical energy and by minimizing required power for heating, ventilation and air conditioning (HVAC).


Shopping center “Dolce Vita Shopping Complex“ in Lisbon, Portugal with ETFE membrane elements. Each roof element provides potential for integration of either solar cells or electrochromic films

© Hightex GmbH, Picture in printable resolution: www.fep.fraunhofer.de/press

A major trend in modern architecture is the use of large transparent and translucent façade and roof elements to make time spent in these buildings more pleasant due to bright and spacious rooms and appearance. When made of glass, these façades and roofs are functionalized with heat reflecting coatings to minimize their “g-value”.

However, glass is not bendable enough to apply it to vaulted surfaces as design element in representative buildings such as airports, stadiums, event halls or shopping malls. Furthermore, its high weight limits the use of glass for large area roofs or façades without massive, expensive and design-limiting supporting structures.

For these applications, fluoropolymers such as ethylene tetrafluoroethylene (ETFE) are an alternative to glass providing a long lifetime and resistance to weathering. A noteworthy example for the use of this material is the roof of the largest shopping mall in Europe (the Dolce Vita Tejo in Lisbon, Portugal) with its 5-layer diaphanous cushions comprising 200,000 m² of ETFE.

In contrast to glass, fluoropolymers are difficult to handle in thin-film coating processes. For this reason, roof and façade elements of membranous material are rarely functionalized yet with energy-saving features such as thermal shielding layers or integrated solar modules.

Until now, it was not feasible to optimize the energy budget of buildings featuring membrane roof and façade surfaces. A consortium of nine industrial and research partners has been formed to change that situation by functionalizing fluoropolymer web surfaces with optoelectronic components through thin film coating techniques.

The Project Coordinator, Dr. John Fahlteich, summarizes the research plans as follows: “Membrane façade and roof elements will be functionalized with electrochromic films which allow switching of the transmission of visible light and thermal radiation by applying an electrical voltage. The energy required for that is made available through flexible organic solar cells. Within the project FLEX-G, we aim to develop dynamic processing and deposition techniques in a way that they are applicable not only for flexible, membrane based building envelopes but also for glass-based systems.”

Within the project duration of 3-years, FLEX-G will investigate processes that allow the deposition of electrochromic layer stacks directly on an ETFE film surface. The flexibility of the film enables the use of economical, efficient and high throughput roll-to-roll (R2R) fabrication processes. Finally, a 36 m² large ETFE membrane roof prototype will demonstrate both the electrochromic components for switching the total solar energy transmittance and the flexible organic solar cells for electrical power generation.

With integration of flexible optoelectronic components on vaulted building envelopes FLEX-G will contribute considerably to reducing the primary energy consumption of buildings. This is also in-line with the goal of the German federal government to reduce primary energy consumption in Germany to up 50% by 2050.

About FLEX-G

The FLEX-G research program (BMWi funding reference 03ET1470A) is a joint effort of:
- Fraunhofer-Gesellschaft zur Förderung angewandter Wissenschaften e.V. represented by:
- FEP Dresden
- ISC Würzburg
- IAP Golm
- Hochschule für Technik Stuttgart
- Coatema Coating Machinery GmbH
- Hightex GmbH
- Lamilux Heinrich Strunz GmbH
- Heliatek GmbH
- ROWO Coating GmbH
- EControl Glas GmbH & Co. KG
- Nowofol Kunststoffprodukte GmbH

Press contact:

Mrs. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/JRL

Frau Silvena Ilieva | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Architecture and Construction:

nachricht Construction Impact Guide
18.05.2018 | Hochschule RheinMain

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>