Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulated Earthquake to Test Building's Durability

24.10.2012
The two-story building on West Commercial Avenue in El Centro, CA was built in the 1920s and has withstood four major earthquakes in 1940, 1979, 1987, and 2010 but it may not be standing for long.

That's because a research team that includes Babak Moaveni, assistant professor of civil and environmental engineering at Tufts University School of Engineering, plans to shake and rumble the structure until it's on the verge of collapsing into a heap of debris and dust.

Moaveni is collaborating with Andreas Stavridis, assistant professor of civil engineering at the University of Texas-Arlington, on a National Science Foundation-funded study to assess how buildings made with reinforced concrete frames and masonry infill walls hold up during an earthquake. The data will also be used to refine existing analytical models and techniques that engineers use when evaluating seismic safety of similarly constructed buildings. The research team also includes engineers from the University of California, at Los Angeles (UCLA).

Thousands of such buildings exist in earthquake-prone places like Los Angeles, San Francisco, the Mediterranean and Latin America, and they are vulnerable to serious damage. "These buildings were built and designed years ago according to building codes that have since become outdated," says Moaveni.

Using an "Eccentric-Mass" Shaker to Rattle a Building

Typically, after an earthquake, owners of a building like the one on West Commercial Avenue would have the structure repaired and maybe retrofitted so that it could endure the next quake. But damage from the 2010 earthquake was so severe that repair was not worth the cost. Owners and the city officials decided to have it demolished.

That’s when Moaveni and Stavridis came forward. In the first phase of the project, the engineers will record the building's existing condition. Then, the team will install a spinning device called an eccentric-mass shaker on the building's roof. This device will induce further damage by simulating the pulsing and vibration of an earthquake rattling the structure from the top down. This has not been done before with an entire structure with that degree of damage. "We are glad that the building owners realized that the building’s misfortune has presented a unique research opportunity for us," Stavridis explains.

The researchers will install cameras at critical locations of the structures to observe damage as the test progresses. At specific intervals, they will also halt the shaker to assess and document structural damage, through visual inspection. Computers will also record data from sensors inside the building. With the initial measurements as a baseline, the researchers will evaluate and quantify progressive damage sustained by the building as it is shaken apart.

Field testing of full-scale structures using mechanical shakers plays an important role in this type of seismic research. In previous experiments, researchers have experimented on wall portions or sections of buildings using low-to-moderate levels of vibrations. "This is a very challenging project but a great research opportunity because we are working with an entire existing building," says Moaveni.

In their project, Moaveni and Stavridis plan to exert large-amplitude forces on the building. "We don't know if we will shake the building until it collapses," Moaveni says. "But, at a minimum, we will shake it until it is on the verge of collapse."

About Tufts School of Engineering
Located on Tufts' Medford/Somerville campus, the School of Engineering offers a rigorous engineering education in a unique environment that blends the intellectual and technological resources of a world-class research university with the strengths of a top-ranked liberal arts college. Close partnerships with Tufts' excellent undergraduate, graduate and professional schools, coupled with a long tradition of collaboration, provide a strong platform for interdisciplinary education and scholarship. The School of Engineering’s mission is to educate engineers committed to the innovative and ethical application of science and technology in addressing the most pressing societal needs, to develop and nurture twenty-first century leadership qualities in its students, faculty, and alumni, and to create and disseminate transformational new knowledge and technologies that further the well-being and sustainability of society in such cross-cutting areas as human health, environmental sustainability, alternative energy, and the human-technology interface.

Alex Reid | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Architecture and Construction:

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>