Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulated Earthquake to Test Building's Durability

24.10.2012
The two-story building on West Commercial Avenue in El Centro, CA was built in the 1920s and has withstood four major earthquakes in 1940, 1979, 1987, and 2010 but it may not be standing for long.

That's because a research team that includes Babak Moaveni, assistant professor of civil and environmental engineering at Tufts University School of Engineering, plans to shake and rumble the structure until it's on the verge of collapsing into a heap of debris and dust.

Moaveni is collaborating with Andreas Stavridis, assistant professor of civil engineering at the University of Texas-Arlington, on a National Science Foundation-funded study to assess how buildings made with reinforced concrete frames and masonry infill walls hold up during an earthquake. The data will also be used to refine existing analytical models and techniques that engineers use when evaluating seismic safety of similarly constructed buildings. The research team also includes engineers from the University of California, at Los Angeles (UCLA).

Thousands of such buildings exist in earthquake-prone places like Los Angeles, San Francisco, the Mediterranean and Latin America, and they are vulnerable to serious damage. "These buildings were built and designed years ago according to building codes that have since become outdated," says Moaveni.

Using an "Eccentric-Mass" Shaker to Rattle a Building

Typically, after an earthquake, owners of a building like the one on West Commercial Avenue would have the structure repaired and maybe retrofitted so that it could endure the next quake. But damage from the 2010 earthquake was so severe that repair was not worth the cost. Owners and the city officials decided to have it demolished.

That’s when Moaveni and Stavridis came forward. In the first phase of the project, the engineers will record the building's existing condition. Then, the team will install a spinning device called an eccentric-mass shaker on the building's roof. This device will induce further damage by simulating the pulsing and vibration of an earthquake rattling the structure from the top down. This has not been done before with an entire structure with that degree of damage. "We are glad that the building owners realized that the building’s misfortune has presented a unique research opportunity for us," Stavridis explains.

The researchers will install cameras at critical locations of the structures to observe damage as the test progresses. At specific intervals, they will also halt the shaker to assess and document structural damage, through visual inspection. Computers will also record data from sensors inside the building. With the initial measurements as a baseline, the researchers will evaluate and quantify progressive damage sustained by the building as it is shaken apart.

Field testing of full-scale structures using mechanical shakers plays an important role in this type of seismic research. In previous experiments, researchers have experimented on wall portions or sections of buildings using low-to-moderate levels of vibrations. "This is a very challenging project but a great research opportunity because we are working with an entire existing building," says Moaveni.

In their project, Moaveni and Stavridis plan to exert large-amplitude forces on the building. "We don't know if we will shake the building until it collapses," Moaveni says. "But, at a minimum, we will shake it until it is on the verge of collapse."

About Tufts School of Engineering
Located on Tufts' Medford/Somerville campus, the School of Engineering offers a rigorous engineering education in a unique environment that blends the intellectual and technological resources of a world-class research university with the strengths of a top-ranked liberal arts college. Close partnerships with Tufts' excellent undergraduate, graduate and professional schools, coupled with a long tradition of collaboration, provide a strong platform for interdisciplinary education and scholarship. The School of Engineering’s mission is to educate engineers committed to the innovative and ethical application of science and technology in addressing the most pressing societal needs, to develop and nurture twenty-first century leadership qualities in its students, faculty, and alumni, and to create and disseminate transformational new knowledge and technologies that further the well-being and sustainability of society in such cross-cutting areas as human health, environmental sustainability, alternative energy, and the human-technology interface.

Alex Reid | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Architecture and Construction:

nachricht University of Cincinnati, industry partners develop low-cost, 'tunable' window tintings
11.06.2015 | University of Cincinnati

nachricht More densely populated urban areas call for more urban quality
28.05.2015 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

3D Plasmonic Antenna Capable of Focusing Light into Few Nanometers

30.06.2015 | Physics and Astronomy

X-rays and electrons join forces to map catalytic reactions in real-time

30.06.2015 | Physics and Astronomy

A polarizing view

30.06.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>