Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulated Earthquake to Test Building's Durability

24.10.2012
The two-story building on West Commercial Avenue in El Centro, CA was built in the 1920s and has withstood four major earthquakes in 1940, 1979, 1987, and 2010 but it may not be standing for long.

That's because a research team that includes Babak Moaveni, assistant professor of civil and environmental engineering at Tufts University School of Engineering, plans to shake and rumble the structure until it's on the verge of collapsing into a heap of debris and dust.

Moaveni is collaborating with Andreas Stavridis, assistant professor of civil engineering at the University of Texas-Arlington, on a National Science Foundation-funded study to assess how buildings made with reinforced concrete frames and masonry infill walls hold up during an earthquake. The data will also be used to refine existing analytical models and techniques that engineers use when evaluating seismic safety of similarly constructed buildings. The research team also includes engineers from the University of California, at Los Angeles (UCLA).

Thousands of such buildings exist in earthquake-prone places like Los Angeles, San Francisco, the Mediterranean and Latin America, and they are vulnerable to serious damage. "These buildings were built and designed years ago according to building codes that have since become outdated," says Moaveni.

Using an "Eccentric-Mass" Shaker to Rattle a Building

Typically, after an earthquake, owners of a building like the one on West Commercial Avenue would have the structure repaired and maybe retrofitted so that it could endure the next quake. But damage from the 2010 earthquake was so severe that repair was not worth the cost. Owners and the city officials decided to have it demolished.

That’s when Moaveni and Stavridis came forward. In the first phase of the project, the engineers will record the building's existing condition. Then, the team will install a spinning device called an eccentric-mass shaker on the building's roof. This device will induce further damage by simulating the pulsing and vibration of an earthquake rattling the structure from the top down. This has not been done before with an entire structure with that degree of damage. "We are glad that the building owners realized that the building’s misfortune has presented a unique research opportunity for us," Stavridis explains.

The researchers will install cameras at critical locations of the structures to observe damage as the test progresses. At specific intervals, they will also halt the shaker to assess and document structural damage, through visual inspection. Computers will also record data from sensors inside the building. With the initial measurements as a baseline, the researchers will evaluate and quantify progressive damage sustained by the building as it is shaken apart.

Field testing of full-scale structures using mechanical shakers plays an important role in this type of seismic research. In previous experiments, researchers have experimented on wall portions or sections of buildings using low-to-moderate levels of vibrations. "This is a very challenging project but a great research opportunity because we are working with an entire existing building," says Moaveni.

In their project, Moaveni and Stavridis plan to exert large-amplitude forces on the building. "We don't know if we will shake the building until it collapses," Moaveni says. "But, at a minimum, we will shake it until it is on the verge of collapse."

About Tufts School of Engineering
Located on Tufts' Medford/Somerville campus, the School of Engineering offers a rigorous engineering education in a unique environment that blends the intellectual and technological resources of a world-class research university with the strengths of a top-ranked liberal arts college. Close partnerships with Tufts' excellent undergraduate, graduate and professional schools, coupled with a long tradition of collaboration, provide a strong platform for interdisciplinary education and scholarship. The School of Engineering’s mission is to educate engineers committed to the innovative and ethical application of science and technology in addressing the most pressing societal needs, to develop and nurture twenty-first century leadership qualities in its students, faculty, and alumni, and to create and disseminate transformational new knowledge and technologies that further the well-being and sustainability of society in such cross-cutting areas as human health, environmental sustainability, alternative energy, and the human-technology interface.

Alex Reid | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Architecture and Construction:

nachricht Smarter window materials can control light and energy
23.07.2015 | University of Texas at Austin

nachricht University of Cincinnati, industry partners develop low-cost, 'tunable' window tintings
11.06.2015 | University of Cincinnati

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>