Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Robot inspects concrete garage floors and bridge roadways for damage


Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be presenting BetoScan®, a robot capable of inspecting concrete surfaces as large as several hundred square meters on its own. Only one person is required to operate and monitor the system.

BetoScan®: robot that can inspect concrete floors for damage in parking garages.

Uwe Bellhäuser

Employees from the Fraunhofer Institute for Nondestructive Testing IZFP, together with the German Federal Institute for Materials Research and Testing (BAM) and industry experts, have joined forces to develop a robot platform that can independently scan and inspect large areas of concrete for damage without impacting the surface. Referred to as BetoScan®, the system was designed as a self-propelled, self-navigating robot platform for nondestructive inspection sensors.

"Our robot can easily inspect parking garage surfaces as large as several hundred square meters in one day and requires only one person to operate and monitor the system," explains Ralf Moryson, an engineer at Fraunhofer IZFP. The robot can independently scan obstacle-free concrete surfaces using a preselected grid while simultaneously recording the data acquired by the various inspection processes.

The cascadable mounting system for the inspection sensors permits the utilization and quick replacement of commercially-available sensors. When selecting the sensors for the system, the developers focused on automated logging of the measurement results, as well as on the use of well-established inspection methods.

This provides an extensive inspection capability that ensures the timely identification of surface corrosion. While scanning the surface, the system also creates a survey of the structure being inspected.

"A major advantage of our robot system is the integrated combination of different nondestructive testing processes. The sensors analyze factors such as moisture content and the thickness of the concrete, as well as the depth and condition of the reinforcement," adds Moryson. The complete measurement results can be graphically displayed. Rounding out this development is the ability to administer the measurement data.

The BetoScan® project was funded through the German Federal Ministry for Economic Affairs and Energy InnoNet program.

Weitere Informationen:

Sabine Poitevin-Burbes | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

More articles from Architecture and Construction:

nachricht Rock solid: Carbon-reinforced concrete from Augsburg
11.10.2016 | Universität Augsburg

nachricht Heating and cooling with environmental energy
22.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>