Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Could Spur Use of Sustainable Composite Lumber

05.09.2008
Two University of Massachusetts Amherst researchers are developing computer models to predict the strength of structural composite lumber (SCL), which could broaden the use of the sustainable material in large building projects.

Peggi Clouston, associate professor in wood mechanics, and Sanjay Arwade, assistant professor in civil and environmental engineering, are creating the computational tools with a three-year, $300,000 grant from the National Science Foundation.

According to Clouston, SCL is a building material used extensively in North America in residential construction. SCL is created by layering dried and graded wood veneers or strands with waterproof adhesive to form long rectangular beams and other structural members.

SCL manufacturers want to make as strong a composite with the cheapest wood possible, such as waste wood or weed species, she says, but new products must be tested in a laboratory to determine their strength. That process can be time-consuming and costly, says Clouston.

Clouston and Arwade’s research is aimed at producing a quick and inexpensive analytical method that will accelerate the development of less costly or stronger wood products that could be used in major non-residential building projects such as shopping centers or schools, she says.

“By making the predictive capability widely available, this project marks a first step in advancing the practice of wood design to a state comparable to that of steel and concrete,” says Clouston. “Building products manufacturers and engineers will have a great interest in this.”

Along with economic advantages, she says, SCL offers significant environmental benefits because wood is renewable, recyclable, biodegradable and sustainable. “It takes less energy and creates less pollution to transform trees into wood products than it does to manufacture steel, concrete or plastic products,” says Clouston.

According to the researchers, the work will lay a scientific foundation for investigations into other wood products such as glue-laminated timber or plywood. Graduate-level course modules on wood composite modeling are part of their integrated plan for research and learning.

Peggi Clouston | Newswise Science News
Further information:
http://www.umass.edu/newsoffice

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>