Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Project: Robotic Fabrication in Timber Construction

20.09.2013
Constructing Innovation and Fascinating Architecture

Researchers at the University of Stuttgart develop a lightweight timber construction system combining robotic prefabrication with computational design and simulation processes, as well as three-dimensional surveying technologies used in engineering geodesy.


A temporary research pavilion located on the University campus in Stuttgart showed the potentials of robotic prefabrication in timber construction in 2011. The goal of the new research project is to systematically investigate these potentials in relation to industrial fabrication.

Image: ICD / ITKE University of Stuttgart


First mock-up of the prototype building.

Image: University of Stuttgart

In collaboration with Kuka, a manufacturer of industrial robot arms, and the timber construction and engineering company MüllerBlaustein, the partners investigate the potentials of robotic prefabrication in timber construction. Their goal is to develop innovative, performative and sustainable construction systems made from wood, which also expand the repertoire of architectural expression in timber construction.

Small and medium-sized enterprises in Baden-Württemberg are leading the industry in the field for specialized timber constructions. In the past, timber fabrication processes were focused on either manual work or mass production of single elements. Although these techniques are elaborated and efficient, they are also inflexible. This is the reason for an increasing amount of interest in computational design and fabrication processes, as well as the use of industrial robots. Robotic fabrication substantially expands the range of manufacturing possibilities and offers more freedom for developing innovative, material-oriented and adaptive construction systems.

The University of Stuttgart plays a leading role in the research of lightweight structures. In the summer of 2011 the Institute for Computational Design (ICD) and the Institute of Building Structures and Structural Design (ITKE), together with students at the University of Stuttgart have realized a temporary, bionic research pavilion made of extremely thin plywood. The Research Pavilion, which has been widely published and awarded, demonstrated the constructional and architectural potentials of robotic fabrication in timber construction on a prototypical level.

In the context of a research project funded by the European Union and the state of Baden-Württemberg with an overall budget of 425,000 Euro, these preliminary works are now being translated into a robotically fabricated, lightweight construction system with a practical orientation towards the specific requirements of the building industry. For this purpose, the ICD and ITKE partner up with the Institute of Engineering Geodesy (IIGS) of the University of Stuttgart, as well as industrial robot manufacturer KUKA, timber construction company MüllerBlaustein, Landesbetrieb Forst Baden-Württemberg and the Landesgartenschau Schwäbisch Gmünd 2014.

The research project includes the development, fabrication and construction of a building prototype for the state of Baden-Württemberg’s landscaping exhibition “Landesgartenschau 2014” in Schwäbisch Gmünd in 2014. The prototype will be constructed as a lightweight timber plate structure, which will be robotically fabricated in collaboration with MüllerBlaustein. The goal is not only to investigate the possibilities of robotic fabrication, but also to demonstrate and reinforce the competitiveness and power of innovation of small and medium sized companies in Baden-Württemberg.

The investigation of the potentials of robotic fabrication requires the development and application of novel architectural design, planning and simulation processes. A main focus lies on the coherent “digital chain” from the geometry modelling, to the structural analysis and digital fabrication, as well as the subsequent monitoring of tolerances and geometrical deviations. The University of Stuttgart therefore follows an interdisciplinary and integrative approach, which also incorporates the material’s characteristics and processing possibilities. Utilitzing the University’s own robotic fabrication equipment, innovative and practical construction principles are continuously being investigated and further developed into architectural systems.

More Information:
Tobias Schwinn, University of Stuttgart, Institute for Computational Design,
Tel. 0711/685-819 24, E-Mail: tobias.schwinn (at) icd.uni-stuttgart.de
Andrea Mayer-Grenu, University of Stuttgart, Abt. Hochschulkommunikation, Tel. 0711/685-82176,

E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | Universität Stuttgart
Further information:
http://www.uni-stuttgart.de

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>