Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New reports urges more detailed utility metering to improve building efficiency

10.11.2011
A new interagency report recommends systematic consideration of new metering technologies, called submetering, that can yield up-to-date, finely grained snapshots of energy and water usage in commercial and residential buildings to guide efficiency improvements and capture the advantages of a modernized electric power grid.

Commercial and residential buildings consume vast amounts of energy, water, and material resources. In fact, U.S. buildings account for more than 40 percent of total U.S. energy consumption, including 72 percent of electricity use. If current trends continue, buildings worldwide will be the largest consumer of global energy by 2025. By 2050, buildings are likely to use as much energy as the transportation and industrial sectors combined.

Submetering is the use of metering devices to measure actual energy or water consumption at points downstream from the primary utility meter on a campus or building. Submetering allows building owners to monitor energy or water usage for individual tenants, departments, pieces of equipment or other loads to account for their specific usage. Submetering technologies enable building owners to optimize design and retrofit strategies to energy and water management procedures more efficient and effective.

While the return on investment (ROI) for submeters depends on specific energy-efficiency strategies that may vary by climate, building type, and other factors, "numerous case studies provide evidence that the ROI can be significant," concludes the report,Submetering of Building Energy and Water Usage: Analysis and Recommendations of the Subcommittee on Buildings Technology Research and Development. Installing submetering technology also makes possible the use of more advanced conservation technologies in the future, the report notes.

The report is a product of the Buildings Technology Research and Development Subcommittee of the National Science and Technology Council (NSTC), a cabinet-level council that is the principal means within the executive branch to coordinate science and technology policy across the diverse entities that make up the federal research and development enterprise.

The NSTC report provides an overview of the key elements of submetering and associated energy management systems to foster understanding of associated benefits and complexities. It documents the current state of submetering and provides relevant case studies and preliminary findings relating to submetering system costs and ROI. The report also addresses gaps, challenges and barriers to widespread acceptance along with descriptive candidate areas where additional development or progress is required. It also surveys policy options for changing current buildings-sector practices.

The 74-page report can be downloaded from: www.bfrl.nist.gov/buildingtechnology/documents/

SubmeteringEnergyWaterUsageOct2011.pdf

For more details, see the Nov. 8, 2011 announcement, "Government Issues Building Energy and Water Submetering Report" at www.nist.gov/el/submetering.cfm

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>