Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New reports urges more detailed utility metering to improve building efficiency

10.11.2011
A new interagency report recommends systematic consideration of new metering technologies, called submetering, that can yield up-to-date, finely grained snapshots of energy and water usage in commercial and residential buildings to guide efficiency improvements and capture the advantages of a modernized electric power grid.

Commercial and residential buildings consume vast amounts of energy, water, and material resources. In fact, U.S. buildings account for more than 40 percent of total U.S. energy consumption, including 72 percent of electricity use. If current trends continue, buildings worldwide will be the largest consumer of global energy by 2025. By 2050, buildings are likely to use as much energy as the transportation and industrial sectors combined.

Submetering is the use of metering devices to measure actual energy or water consumption at points downstream from the primary utility meter on a campus or building. Submetering allows building owners to monitor energy or water usage for individual tenants, departments, pieces of equipment or other loads to account for their specific usage. Submetering technologies enable building owners to optimize design and retrofit strategies to energy and water management procedures more efficient and effective.

While the return on investment (ROI) for submeters depends on specific energy-efficiency strategies that may vary by climate, building type, and other factors, "numerous case studies provide evidence that the ROI can be significant," concludes the report,Submetering of Building Energy and Water Usage: Analysis and Recommendations of the Subcommittee on Buildings Technology Research and Development. Installing submetering technology also makes possible the use of more advanced conservation technologies in the future, the report notes.

The report is a product of the Buildings Technology Research and Development Subcommittee of the National Science and Technology Council (NSTC), a cabinet-level council that is the principal means within the executive branch to coordinate science and technology policy across the diverse entities that make up the federal research and development enterprise.

The NSTC report provides an overview of the key elements of submetering and associated energy management systems to foster understanding of associated benefits and complexities. It documents the current state of submetering and provides relevant case studies and preliminary findings relating to submetering system costs and ROI. The report also addresses gaps, challenges and barriers to widespread acceptance along with descriptive candidate areas where additional development or progress is required. It also surveys policy options for changing current buildings-sector practices.

The 74-page report can be downloaded from: www.bfrl.nist.gov/buildingtechnology/documents/

SubmeteringEnergyWaterUsageOct2011.pdf

For more details, see the Nov. 8, 2011 announcement, "Government Issues Building Energy and Water Submetering Report" at www.nist.gov/el/submetering.cfm

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>