Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vienna University of Technology tests tunnel fire safety

03.09.2007
As part of a KIRAS project, a consortium managed by construction engineers of the Vienna University of Technology examines the concrete damage and the flattening behavior in case of a tunnel fire. An innovative simulation tool helps evaluate the stability of a damaged tunnel. Three construction projects in Vienna are tested using this newly developed evaluation process.

In the last years, the tunnel fires have shown that the tunnel support structure is severely damaged at an extremely high fire impact. “In some tunnels, up to two thirds of the tunnel inner shell are shattered by explosion. The leftover concrete suffers a severe thermal damage. This combination can lead to structure collapse in the case of one-shell tunnels that are close to upper areas,” clarifies Matthias Zeiml of the Institute for Mechanics of Materials and Structures (IMWS) of the Vienna Universisty of Technology.

He and his colleague from Munich, Roman Lackner (lecturer at IMWS), analyzed, as part of a three-year FWF-project, the “transportation processes in concrete at high temperatures.” “The blowup of the concrete sticks is a consequence of the thermal wedging and of the steam pressure, which develops in the heated concrete and which cannot escape.

These flattenings sometimes reach far behind the reinforced steel,” explains Zeiml. At the same time, University of Technology Professor Ulrich Schneider of the Institute for Building Construction and Technology and the Research Institute of the Austrian Cement Industry (VÖZFI) analyzed the effect of minuscule polypropylene fibers (carpet fibers) which are blended into the concrete. When the concrete is warmed up, adding a few millimeter-long fibers produces channels through which the water steam can escape. This way, flatennings can be effectively prevented.

The results of this fundamental research are now useful to researchers for the KIRAS-Project (Austrian Support Program for Safety Research) of the BMVIT, which received a grant in June. This research project benefits from the participation of a consortium that consists of University Institutes of the Vienna University of Technology and the Vienna University of Natural Resources and Applied Life Sciences, infrastructure construction developers (ÖBB, ASFiNAG, Wiener Linien) as well as engineering companies and research laboratories. At the forefront of research there is the development of a new evaluation pattern which for the first time facilitates the prognosis of the vital processes which are influenced by the structure support behavior. “Our project partners - ÖBB, ASFiNAG, and Wiener Linien – are interested in a close to reality prognosis of the tunnel safety level under fire impact. Moreover, we have to answer questions regarding issues such as the need for a temporary support and the extent of the necessary restructuring measures for different fire scenarios,” adds Lackner.

Daniela Ausserhuber | alfa
Further information:
http://www.tuwien.ac.at/index.php?id=5186
http://www.tuwien.ac.at/pr

More articles from Architecture and Construction:

nachricht Smart buildings through innovative membrane roofs and façades
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>