Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT duo see people-powered "Crowd Farm" Plan would harvest energy of human movement

01.08.2007
Two graduate students at MIT's School of Architecture and Planning want to harvest the energy of human movement in urban settings, like commuters in a train station or fans at a concert.

The so-called "Crowd Farm," as envisioned by James Graham and Thaddeus Jusczyk, would turn the mechanical energy of people walking or jumping into a source of electricity. Their proposal took first place in the Japan-based Holcim Foundation's Sustainable Construction competition this year.

A Crowd Farm in Boston's South Station railway terminal would work like this: A responsive sub-flooring system made up of blocks that depress slightly under the force of human steps would be installed beneath the station's main lobby. The slippage of the blocks against one another as people walked would generate power through the principle of the dynamo, a device that converts the energy of motion into that of an electric current.

The electric current generated by the Crowd Farm could then be used for educational purposes, such as lighting up a sign about energy.

"We want people to understand the direct relationship between their movement and the energy produced," says Juscyzk.

The Crowd Farm is not intended for home use. According to Graham and Jusczy, a single human step can only power two 60W light bulbs for one flickering second. But get a crowd in motion, multiply that single step by 28,527 steps, for example, and the result is enough energy to power a moving train for one second.

And while the farm is an urban vision, the dynamo-floor principle can also be applied to capturing energy at places like rock concerts, too. "Greater movement of people could make the music louder,"

suggests Jurcyzk.

The students' test case, displayed at the Venice Biennale and in a train station in Torino, Italy, was a prototype stool that exploits the passive act of sitting to generate power. The weight of the body on the seat causes a flywheel to spin, which powers a dynamo that, in turn, lights four LEDs.

"People tended to be delighted by sitting on the stool and would get up and down repeatedly," recalls Graham.

Other people have developed piezo-electric (mechanical-to-electrical) surfaces in the past, but the Crowd Farm has the potential to redefine urban space by adding a sense of fluidity and encouraging people to activate spaces with their movement.

"Our intention was to think of it not as a high-tech mat that would be laid down somewhere, but to really integrate it into a new sort of building system," Graham says.

The Crowd Farm floor is composed of standard parts that are easily replicated but it is expensive to produce at this stage, they said.

"Only through experimentation - which can be expensive - do technologies become practical," Graham says.

Graham and Juscyzk rely on bicycles, rather than trains or buses, for their commute to MIT. But, both students were impressed enough by recent experiences in large crowds - for Graham, the 2003 New York City blackout; for Juscyzk, Boston's World Cup celebration in City Hall Plaza - to start work on the Farm.

The students were inspired as well by an "ingenious little device by Thomas Edison. When visitors came to his house, they passed through a turnstile that pumped water into his holding tank," says Graham. In addition, they were guided by their advisor, Associate Professor J. Meejin Yoon, who helped them take their proposal from the power-stool to the Crowd Farm.

Patti Richards | MIT News Office
Further information:
http://www.mit.edu

More articles from Architecture and Construction:

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>