Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT duo see people-powered "Crowd Farm" Plan would harvest energy of human movement

01.08.2007
Two graduate students at MIT's School of Architecture and Planning want to harvest the energy of human movement in urban settings, like commuters in a train station or fans at a concert.

The so-called "Crowd Farm," as envisioned by James Graham and Thaddeus Jusczyk, would turn the mechanical energy of people walking or jumping into a source of electricity. Their proposal took first place in the Japan-based Holcim Foundation's Sustainable Construction competition this year.

A Crowd Farm in Boston's South Station railway terminal would work like this: A responsive sub-flooring system made up of blocks that depress slightly under the force of human steps would be installed beneath the station's main lobby. The slippage of the blocks against one another as people walked would generate power through the principle of the dynamo, a device that converts the energy of motion into that of an electric current.

The electric current generated by the Crowd Farm could then be used for educational purposes, such as lighting up a sign about energy.

"We want people to understand the direct relationship between their movement and the energy produced," says Juscyzk.

The Crowd Farm is not intended for home use. According to Graham and Jusczy, a single human step can only power two 60W light bulbs for one flickering second. But get a crowd in motion, multiply that single step by 28,527 steps, for example, and the result is enough energy to power a moving train for one second.

And while the farm is an urban vision, the dynamo-floor principle can also be applied to capturing energy at places like rock concerts, too. "Greater movement of people could make the music louder,"

suggests Jurcyzk.

The students' test case, displayed at the Venice Biennale and in a train station in Torino, Italy, was a prototype stool that exploits the passive act of sitting to generate power. The weight of the body on the seat causes a flywheel to spin, which powers a dynamo that, in turn, lights four LEDs.

"People tended to be delighted by sitting on the stool and would get up and down repeatedly," recalls Graham.

Other people have developed piezo-electric (mechanical-to-electrical) surfaces in the past, but the Crowd Farm has the potential to redefine urban space by adding a sense of fluidity and encouraging people to activate spaces with their movement.

"Our intention was to think of it not as a high-tech mat that would be laid down somewhere, but to really integrate it into a new sort of building system," Graham says.

The Crowd Farm floor is composed of standard parts that are easily replicated but it is expensive to produce at this stage, they said.

"Only through experimentation - which can be expensive - do technologies become practical," Graham says.

Graham and Juscyzk rely on bicycles, rather than trains or buses, for their commute to MIT. But, both students were impressed enough by recent experiences in large crowds - for Graham, the 2003 New York City blackout; for Juscyzk, Boston's World Cup celebration in City Hall Plaza - to start work on the Farm.

The students were inspired as well by an "ingenious little device by Thomas Edison. When visitors came to his house, they passed through a turnstile that pumped water into his holding tank," says Graham. In addition, they were guided by their advisor, Associate Professor J. Meejin Yoon, who helped them take their proposal from the power-stool to the Crowd Farm.

Patti Richards | MIT News Office
Further information:
http://www.mit.edu

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>