Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT professor says certain home shapes and roofs hold up best in hurricane

20.06.2007
Certain home shapes and roof types can better resist high winds and hurricanes, according to a researcher at New Jersey Institute of Technology (NJIT).

Civil engineer Rima Taher, PhD, special lecturer in the New Jersey School of Architecture at NJIT, spent two years examining the findings of research centers that have studied the best designs and construction materials and methods needed to withstand extreme wind events and hurricanes.

“Although I’d like to say that there is a simple and economical solution for housing that won’t fail or collapse in the perfect storm, such information does not yet exist,” said Taher. “However, it is obvious that thanks to the work of wind engineers and researchers that changes to home design and construction can make buildings safer for people, while saving government and industry billions of dollars annually.”

“Design of Low-Rise Buildings for Extreme Wind Events” (Journal of Architectural Engineering, March, 2007) by Taher highlighted such research findings. Wind researchers at the Center for Building Science and Technology (CSTB) in France, researched and tested reduced-scale home models at its wind tunnel facilities, and developed a prototype of a “cyclonic” or hurricane-resistant dwelling. Taher cooperated with the CSTB wind researchers, working on the structural aspect of the home’s design.

That design eventually became an elevated structure of a square plan form on an open foundation. The home had a hip roof and was equipped with a central shaft with aerodynamic features designed to reduce wind forces during an extreme wind event. Wind tunnel tests at CSTB showed that such a home would be far more efficient under high winds and hurricane conditions than a typical structure. CSTB is working with a builder to construct a prototype of such a home on Réunion in the West Indian Ocean.

From this work and other studies Taher recommends the following construction considerations for homeowners in hurricane-prone regions.

A home with a square floor plan (or better a hexagonal or octagonal plan) with a multiple-panel roof (4 or more panels) was found to have reduced wind loads.

Roofs with multiple slopes such as a hip roof (4 slopes) perform better under wind forces than gable roofs (2 slopes). Gable roofs are generally more common because they are cheaper to build. A 30-degree roof slope has the best results.

Wind forces on a roof tend to be uplift forces. This explains why roofs are often blown off during an extreme wind event. Connecting roofs to walls matters. Stapled roofs were banned following Hurricane Andrew in Florida in 1993.

Strong connections between the structure and its foundation and connections between walls are good. Structural failure is often progressive where the failure of one structural element triggers the failure of another, leading to a total collapse. Connections are generally vulnerable but can be inexpensively strengthened.

Certain areas of a building such as the ridge of a roof, corners and eaves are normally subject to higher wind pressures. In the cyclonic home design, CSTB researchers proposed some aerodynamic features to alleviate these local pressures such as introducing a central shaft which would function by creating a connection between the internal space and the roof ridge considered to be the location of the largest depression. This connection helps balance pressures leading to a significant reduction in the roof’s wind loads.

Roof overhangs are subject to wind uplift forces which could trigger a roof failure. In the design of the hurricane-resistant home, the length of these overhangs should be limited to 20 inches.

The design of the cyclonic home includes simple systems to reduce the local wind stresses at the roof’s lower edges such as a notched frieze or a horizontal grid to be installed at the level of the gutters along the perimeter of the home.

An elevated structure on an open foundation reduces the risk of damage from flooding and storm-driven water.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

More articles from Architecture and Construction:

nachricht Flexible protection for "smart" building and façade components
30.11.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Healthy living without damp and mold
16.11.2016 | Fraunhofer-Gesellschaft

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>